544 research outputs found

    A Characterization of Locally Testable Affine-Invariant Properties via Decomposition Theorems

    Full text link
    Let P\mathcal{P} be a property of function Fpn{0,1}\mathbb{F}_p^n \to \{0,1\} for a fixed prime pp. An algorithm is called a tester for P\mathcal{P} if, given a query access to the input function ff, with high probability, it accepts when ff satisfies P\mathcal{P} and rejects when ff is "far" from satisfying P\mathcal{P}. In this paper, we give a characterization of affine-invariant properties that are (two-sided error) testable with a constant number of queries. The characterization is stated in terms of decomposition theorems, which roughly claim that any function can be decomposed into a structured part that is a function of a constant number of polynomials, and a pseudo-random part whose Gowers norm is small. We first give an algorithm that tests whether the structured part of the input function has a specific form. Then we show that an affine-invariant property is testable with a constant number of queries if and only if it can be reduced to the problem of testing whether the structured part of the input function is close to one of a constant number of candidates.Comment: 27 pages, appearing in STOC 2014. arXiv admin note: text overlap with arXiv:1306.0649, arXiv:1212.3849 by other author

    Coherent Control of Photocurrents in Graphene and Carbon Nanotubes

    Full text link
    Coherent one photon (2ω2 \omega) and two photon (ω \omega) electronic excitations are studied for graphene sheets and for carbon nanotubes using a long wavelength theory for the low energy electronic states. For graphene sheets we find that coherent superposition of these excitations produces a polar asymmetry in the momentum space distribution of the excited carriers with an angular dependence which depends on the relative polarization and phases of the incident fields. For semiconducting nanotubes we find a similar effect which depends on the square of the semiconducting gap, and we calculate its frequency dependence. We find that the third order nonlinearity which controls the direction of the photocurrent is robust for semiconducting t ubes and vanishes in the continuum theory for conducting tubes. We calculate corrections to these results arising from higher order crystal field effects on the band structure and briefly discuss some applications of the theory.Comment: 12 pages in RevTex, 6 epsf figure

    Coarse-Grained Picture for Controlling Complex Quantum Systems

    Full text link
    We propose a coarse-grained picture to control ``complex'' quantum dynamics, i.e., multi-level-multi-level transition with a random interaction. Assuming that optimally controlled dynamics can be described as a Rabi-like oscillation between an initial and final state, we derive an analytic optimal field as a solution to optimal control theory. For random matrix systems, we numerically confirm that the analytic optimal field steers an initial state to a target state which both contains many eigenstates.Comment: jpsj2.cls, 2 pages, 3 figure files; appear in J. Phys. Soc. Jpn. Vol.73, No.11 (Nov. 15, 2004

    Counting flags in triangle-free digraphs

    Get PDF
    Motivated by the Caccetta-Haggkvist Conjecture, we prove that every digraph on n vertices with minimum outdegree 0.3465n contains an oriented triangle. This improves the bound of 0.3532n of Hamburger, Haxell and Kostochka. The main new tool we use in our proof is the theory of flag algebras developed recently by Razborov.Comment: 19 pages, 7 figures; this is the final version to appear in Combinatoric

    Generalized gradient expansions in quantum transport equations

    Get PDF
    Gradient expansions in quantum transport equations of a Kadanoff-Baym form have been reexamined. We have realized that in a consistent approach the expansion should be performed also inside of the self-energy in the scattering integrals of these equations. In the first perturbation order this internal expansion gives new correction terms to the generalized Boltzman equation. These correction terms are found here for several typical systems. Possible corrections to the theory of a linear response to weak electric fields are also discussed.Comment: 20 pages, latex, to appear in Journal of Statistical Physics, March (1997

    Optical excitations in hexagonal nanonetwork materials

    Full text link
    Optical excitations in hexagonal nanonetwork materials, for example, Boron-Nitride (BN) sheets and nanotubes, are investigated theoretically. The bonding of BN systems is positively polarized at the B site, and is negatively polarized at the N site. There is a permanent electric dipole moment along the BN bond, whose direction is from the B site to the N site. When the exciton hopping integral is restricted to the nearest neighbors, the flat band of the exciton appears at the lowest energy. The higher optical excitations have excitation bands similar to the electronic bands of graphene planes and carbon nanotubes. The symmetry of the flat exciton band is optically forbidden, indicating that the excitons related to this band will show quite long lifetime which will cause strong luminescence properties.Comment: 4 pages; 3 figures; proceedings of "XVIth International Winterschool on Electronic Properties of Novel Materials (IWEPNM2002)

    Assigning channels via the meet-in-the-middle approach

    Full text link
    We study the complexity of the Channel Assignment problem. By applying the meet-in-the-middle approach we get an algorithm for the \ell-bounded Channel Assignment (when the edge weights are bounded by \ell) running in time O((2+1)n)O^*((2\sqrt{\ell+1})^n). This is the first algorithm which breaks the (O())n(O(\ell))^n barrier. We extend this algorithm to the counting variant, at the cost of slightly higher polynomial factor. A major open problem asks whether Channel Assignment admits a O(cn)O(c^n)-time algorithm, for a constant cc independent of \ell. We consider a similar question for Generalized T-Coloring, a CSP problem that generalizes \CA. We show that Generalized T-Coloring does not admit a 22o(n)poly(r)2^{2^{o\left(\sqrt{n}\right)}} {\rm poly}(r)-time algorithm, where rr is the size of the instance.Comment: SWAT 2014: 282-29

    Exact and approximate algorithms for computing a second Hamiltonian cycle.

    Get PDF
    A classic result by Stockmeyer [Stockmeyer, 1974] gives a non-elementary lower bound to the emptiness problem for star-free generalized regular expressions. This result is intimately connected to the satisfiability problem for interval temporal logic, notably for formulas that make use of the so-called chop operator. Such an operator can indeed be interpreted as the inverse of the concatenation operation on regular languages, and this correspondence enables reductions between non-emptiness of star-free generalized regular expressions and satisfiability of formulas of the interval temporal logic of the chop operator under the homogeneity assumption [Halpern et al., 1983]. In this paper, we study the complexity of the satisfiability problem for a suitable weakening of the chop interval temporal logic, that can be equivalently viewed as a fragment of Halpern and Shoham interval logic featuring the operators B, for "begins", corresponding to the prefix relation on pairs of intervals, and D, for "during", corresponding to the infix relation. The homogeneous models of the considered logic naturally correspond to languages defined by restricted forms of regular expressions, that use union, complementation, and the inverses of the prefix and infix relations

    Approximately coloring graphs without long induced paths

    Get PDF
    It is an open problem whether the 3-coloring problem can be solved in polynomial time in the class of graphs that do not contain an induced path on tt vertices, for fixed tt. We propose an algorithm that, given a 3-colorable graph without an induced path on tt vertices, computes a coloring with max{5,2t122}\max\{5,2\lceil{\frac{t-1}{2}}\rceil-2\} many colors. If the input graph is triangle-free, we only need max{4,t12+1}\max\{4,\lceil{\frac{t-1}{2}}\rceil+1\} many colors. The running time of our algorithm is O((3t2+t2)m+n)O((3^{t-2}+t^2)m+n) if the input graph has nn vertices and mm edges
    corecore