120 research outputs found

    Bottom trawling threatens future climate refugia of rhodoliths globally

    Get PDF
    Climate driven range shifts are driving the redistribution of marine species and threatening the functioning and stability of marine ecosystems. For species that are the structural basis of marine ecosystems, such effects can be magnified into drastic loss of ecosystem functioning and resilience. Rhodoliths are unattached calcareous red algae that provide key complex three-dimensional habitats for highly diverse biological communities. These globally distributed biodiversity hotspots are increasingly threatened by ongoing environmental changes, mainly ocean acidification and warming, with wide negative impacts anticipated in the years to come. These are superimposed upon major local stressors caused by direct destructive impacts, such as bottom trawling, which act synergistically in the deterioration of the rhodolith ecosystem health and function. Anticipating the potential impacts of future environmental changes on the rhodolith biome may inform timely mitigation strategies integrating local effects of bottom trawling over vulnerable areas at global scales. This study aimed to identify future climate refugia, as regions where persistence is predicted under contrasting climate scenarios, and to analyze their trawling threat levels. This was approached by developing species distribution models with ecologically relevant environmental predictors, combined with the development of a global bottom trawling intensity index to identify heavily fished regions overlaying rhodoliths. Our results revealed the importance of light, thermal stress and pH driving the global distribution of rhodoliths. Future projections showed poleward expansions and contractions of suitable habitats at lower latitudes, structuring cryptic depth refugia, particularly evident under the more severe warming scenario RCP 8.5. Our results suggest that if management and conservation measures are not taken, bottom trawling may directly threaten the persistence of key rhodolith refugia. Since rhodoliths have slow growth rates, high sensitivity and ecological importance, understanding how their current and future distribution might be susceptible to bottom trawling pressure, may contribute to determine the fate of both the species and their associated communities.FCT: UIDB/04326/2020/ PTDC/BIA-CBI/6515/2020/ SFRH/BD/144878/2019/ SFRH/BSAB/150485/2019/ norm-DL57/2016/CP1361/CT0035info:eu-repo/semantics/publishedVersio

    A review of common parameters and descriptors used in studies of the impacts of heavy metal pollution on marine macroalgae: identification of knowledge gaps and future needs

    Get PDF
    This study presents a systematic review to assess the main similarities and gaps in efforts to evaluate the impacts of heavy metals on benthic marine seaweeds. A total of 91 studies were compiled, the main parameters (abiotic, biological, ecotoxicological, and heavy metals) and descriptors of which were evaluated by quantitative and qualitative analyses. Our results indicate the importance of diversifying searches by including different languages (i.e. English, Portuguese and Spanish). Most of the studies were field characterizations, with few abiotic parameters and/or seasonality evaluations being employed. In contrast, the assessment of ecotoxicological parameters was highly frequent, which seems incoherent considering the absence of data to support the use of these results in biomonitoring applications. The genera Sargassum, Ulva and Enteromorpha were widely studied worldwide, apart from a small fraction of studies assessing higher levels of biological organization. Moreover, the use of different parameters and descriptors by the evaluated studies precludes making conclusive or reliable comparisons. These findings highlight the importance of greater efforts to construct a concise baseline of knowledge using similar parameters so that global evaluations of the impacts of heavy metals on photosynthetic organisms can be undertaken.info:eu-repo/semantics/publishedVersio

    Phenotypic plasticity in sargassum forests may not counteract projected biomass losses along a broad latitudinal gradient

    Get PDF
    Phenotypic plasticity and local adaptation can adjust individual responses to environmental changes across species' ranges. Studies addressing the implications of such traits have been underrepresented in the marine environment. Sargassum cymosum represents an ideal model to test phenotypic plasticity, as populations along the southwestern Atlantic Ocean display a sharp decrease in abundance toward distributional range limits. We (1) characterized the macroecological environment of S. cymosum across a latitudinal gradient, (2) evaluated potential differences in ecophysiological adjustments (biomass, photosynthetic pigments, phenolic compounds, total soluble sugars and proteins, and carbon-nitrogen-CN-content), and (3) tested for differences in thermal tolerance based on time series analyses produced from the present to contrasting representative concentration pathways scenarios (RCP) of future climate changes. Our results showed distinct macroecological environments, corresponding to tropical and warm temperate conditions, driving biomass and ecophysiological adjustments of S. cymosum. Populations from the two environments displayed contrasting thermal tolerances, with tropical individuals better coping with thermal stress when compared to more temperate ones (lethal temperatures of 33 degrees C vs. 30 degrees C); yet both populations lose biomass in response to increasing thermal stress while increasing secondary metabolites (for example, carotenoids and phenolic compounds) and decrease chlorophyll's content, Fv/Fm, total soluble sugars concentration and CN ratio, owing to oxidative stress. Despite evidence for phenotypic plasticity, significant future losses might occur in both tropical and warm temperate populations, particularly under the no mitigation RCP scenario, also known as the business as usual (that is, 8.5). In this context, broad compliance with the Paris Agreement might counteract projected impacts of climate change, safeguarding Sargassum forests in the years to come.This study was supported by grants from Boticario Foundation, FAPESC-Foundation Support Research and Innovation in the State of Santa Catarina, Capes Higher Education Personnel Improvement Coordination, CNPq-National Council for Scientific and Technological Development, Petrobras Ambiental, REBENTOS-Habitat monitoring network coastal Benthic and ProspecMar-Islands Sustainable Prospecting in Ocean Islands: Biodiversity, Chemistry, Ecology and Biotechnology, Rede Coral Vivo, REDEALGAS, a Pew Marine Fellowship, the Foundation for Science and Technology (FCT) of Portugal via SFRH/BSAB/150485/2019, SFRH/BD/144878/2019, UID/Multi/04326/2019, PTDC/BIA-CBI/6515/2020 and the transitional norm DL57/2016/CP1361/CT0035. LPG received a doctorate scholarship (88882.438723/2019-01) from Capes. CFDG thanks CNPq grants PQ-309658/2016-0and306304/2019-8. PAH thanks CAPES-Senior Visitor, CAPESPrInt 310793/2018-01, CNPq-PVE 407365/2013-3, CNPq-Universal 426215/2016-8 and CNPq-PQ308537/2019-0. GK received a master's scholarship from CAPES.info:eu-repo/semantics/submittedVersio

    Histamine H-3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons

    Get PDF
    Histamine H-3 receptors are widely distributed Gi-coupled receptors whose activation reduces neuronal activity and inhibits release of numerous neurotransmitters. Although these receptors are abundantly expressed in the striatum, their modulatory role on activity-dependent dopamine release is not well understood. Here, we observed that histamine H-3 receptor activation indirectly diminishes dopamine overflow in the ventral striatum by reducing cholinergic interneuron activity. Acute brain slices from C57BL/6 or channelrhodopsin-2-transfected DAT-cre mice were obtained, and dopamine transients evoked either electrically or optogenetically were measured by fast-scan cyclic voltammetry. The H-3 agonist alpha-methylhistamine significantly reduced electrically-evoked dopamine overflow, an effect blocked by the nicotinic acetylcholine receptor antagonist dihydro-beta-erythroidine, suggesting involvement of cholinergic interneurons. None of the drug treatments targeting H-3 receptors affected optogenetically evoked dopamine overflow, indicating that direct H-3-modulation of dopaminergic axons is unlikely. Next, we used qPCR and confirmed the expression of histamine H-3 receptor mRNA in cholinergic interneurons, both in ventral and dorsal striatum. Activation of H-3 receptors by alpha-methylhistamine reduced spontaneous firing of cholinergic interneurons in the ventral, but not in the dorsal striatum. Resting membrane potential and number of spontaneous action potentials in ventral-striatal cholinergic interneurons were significantly reduced by alpha-methylhistamine. Acetylcholine release from isolated striatal synaptosomes, however, was not altered by alpha-methylhistamine. Together, these results indicate that histamine H-3 receptors are important modulators of dopamine release, specifically in the ventral striatum, and that they do so by decreasing the firing rate of cholinergic neurons and, consequently, reducing cholinergic tone on dopaminergic axons. (C) 2018 IBRO. Published by Elsevier Ltd. All rights reserved.Peer reviewe

    Empirical Evidence for Son-Killing X Chromosomes and the Operation of SA-Zygotic Drive

    Get PDF
    Diploid organisms have two copies of all genes, but only one is carried by each haploid gamete and diploid offspring. This causes a fundamental genetic conflict over transmission rate between alternative alleles. Single genes, or gene clusters, only rarely code for the complex phenotypes needed to give them a transmission advantage (drive phenotype). However, all genes on a male's X and Y chromosomes co-segregate, allowing different sex-linked genes to code for different parts of the drive phenotype. Correspondingly, the well-characterized phenomenon of male gametic drive, occurring during haploid gametogenesis, is especially common on sex chromosomes. The new theory of sexually antagonistic zygotic drive of the sex chromosomes (SA-zygotic drive) extends the logic of gametic drive into the diploid phase of the lifecycle, whenever there is competition among siblings or harmful sib-sib mating. The X and Y are predicted to gain a transmission advantage by harming offspring of the sex that does not carry them.Here we analyzed a mutant X-chromosome in Drosophila simulans that produced an excess of daughters when transmitted from males. We developed a series of tests to differentiate between gametic and SA-zygotic drive, and provide multiple lines of evidence that SA-zygotic drive is responsible for the sex ratio bias. Driving sires produce about 50% more surviving daughters than sons.Sex-ratio distortion due to genetic conflict has evolved via gametic drive and maternally transmitted endosymbionts. Our data indicate that sex chromosomes can also drive by harming the non-carrier sex of offspring

    Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection

    Get PDF
    Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome ( approximately 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods
    • …
    corecore