146 research outputs found

    Ionospheric corrections to precise time transfer using GPS

    Get PDF
    The free electrons in the earth's ionosphere can retard the time of reception of GPS signals received at a ground station, compared to their time in free space, by many tens of nanoseconds, thus limiting the accuracy of time transfer by GPS. The amount of the ionospheric time delay is proportional to the total number of electrons encountered by the wave on its path from each GPS satellite to a receiver. This integrated number of electrons is called Total Electron Content, or TEC. Dual frequency GPS receivers designed by Allen Osborne Associates, Inc. (AOA) directly measure both the ionospheric differential group delay and the differential carrier phase advance for the two GPS frequencies and derive from this the TEC between the receiver and each GPS satellite in track. The group delay information is mainly used to provide an absolute calibration to the relative differential carrier phase, which is an extremely precise measure of relative TEC. The AOA Mini-Rogue ICS-4Z and the AOA TurboRogue ICS-4000Z receivers normally operate using the GPS P code, when available, and switch to cross-correlation signal processing when the GPS satellites are in the Anti-Spoofing (A-S) mode and the P code is encrypted. An AOA ICS-Z receiver has been operated continuously for over a year at Hanscom AFB, MA to determine the statistics of the variability of the TEC parameter using signals from up to four different directions simultaneously. The 4-channel ICS-4Z and the 8-channel ICS-4000Z, have proven capabilities to make precise, well calibrated, measurements of the ionosphere in several directions simultaneously. In addition to providing ionospheric corrections for precise time transfer via satellite, this dual frequency design allows full code and automatic codeless operation of both the differential group delay and differential carrier phase for numerous ionospheric experiments being conducted. Statistical results of the data collected from the ICS-4Z during the initial year of ionospheric time delay in the northeastern U.S., and initial results with the ICS-4000Z, will be presented

    Policy Forum: Studying Eyewitness Investigations in the Field

    Get PDF
    This article considers methodological issues arising from recent efforts to provide field tests of eyewitness identification procedures. We focus in particular on a field study (Mecklenburg 2006) that examined the “double blind, sequential” technique, and consider the implications of an acknowledged methodological confound in the study. We explain why the confound has severe consequences for assessing the real-world implications of this study

    The MHD nature of ionospheric wave packets excited by the solar terminator

    Full text link
    We obtained the first experimental evidence for the magnetohydrodynamic (MHD) nature of ionospheric medium-scale travelling wave packets (MSTWP). We used data on total electron content (TEC) measurements obtained at the dense Japanese network GPS/GEONET (1220 stations) in 2008-2009. We found that the diurnal, seasonal and spectral MSTWP characteristics are specified by the solar terminator (ST) dynamics. MSTWPs are the chains of narrow-band TEC oscillations with single packet's duration of about 1-2 hours and oscillation periods of 10-20 minutes. Their total duration is about 4--6 hours. The MSTWP spatial structure is characterized by a high degree of anisotropy and coherence at the distance of more than 10 wavelengths. The MSTWP direction of travelling is characterized by a high directivity regardless of seasons. Occurrence rate of daytime MSTWPs is high in winter and during equinoxes. Occurrence rate of nighttime MSTIDs has its peak in summer. These features are consistent with previous MS travelling ionosphere disturbance (TID) statistics obtained from 630-nm airglow imaging observations in Japan. In winter, MSTWPs in the northern hemisphere are observed 3-4 hours after the morning ST passage. In summer, MSTWPs are detected 1.5-2 hours before the evening ST occurrence at the point of observations, at the moment of the evening ST passage in the magneto-conjugate point. Both the high Q-factor of oscillatory system and synchronization of MSTWP occurrence with the solar terminator passage at the point of observations and in the magneto-conjugate area testify the MHD nature of ST-excited MSTWP generation. The obtained results are the first experimental evidence for the hypothesis of the ST-generated ion sound waves.Comment: 12 pages, 3 figure

    Redes neurais artificiais aplicadas na previsão do VTEC no Brasil

    Get PDF
    Uma forma de se prever o conteúdo total de elétrons na direção vertical (VTEC - Vertical Total Electron Content) usando a arquitetura de redes neurais artificiais (RNA) denominada de perceptrons de múltiplas camadas (MLP - MultipLayer Percetrons) é apresentada e avaliada nesta pesquisa. As entradas do modelo foram definidas como sendo a posição dos pontos ionosféricos (IPP - Ionospheric Pierce Point) e o tempo universal (TU), enquanto que a saída é o VTEC. As variações sazonais e de períodos mais longos são levadas em conta através da atualização do treinamento diariamente. Testes foram conduzidos sobre uma área que abrange o Brasil e sua vizinhança considerando períodos de alta e baixa atividade solar. As RNA foram treinadas utilizando informações dos mapas globais da ionosfera (GIM - Global Ionospheric Maps) produzidos pelo serviço internacional do GNSS (IGS - International GNSS Service) das 72 horas anteriores à época de início da previsão. As RNA treinadas foram utilizadas para prever o VTEC por 72 horas (VTEC RNA). Os VTEC RNA foram comparados com os VTEC contidos nos GIM (VTEC GIM). A raiz do erro médio quadrático (RMS) da diferença entre o VTEC GIM e o VTEC RNA variou de 1,4 a 10,7 unidades de TEC (TECU). O erro relativo mostra que a RNA proposta foi capaz de prever o VTEC com 70 a 85% de acerto

    análise dos efeitos ionosféricos de ordem superior no ciclo solar 24 e influência no posicionamento GNSS absoluto

    Get PDF
    A aplicação da combinação livre da ionosfera para dados GNSS de dupla frequência permite eliminar matematicamente os efeitos de primeira ordem da ionosfera. Contudo, os efeitos de ordem superior não são eliminados e, geralmente, são negligenciados no processamento dos dados GNSS. Neste trabalho apresentam-se discussões e análises relacionadas ao cálculo dos efeitos de ordem superior da ionosfera, o qual envolve o cálculo do TEC a partir de diferentes combinações, o sistema geomagnético IGRF-11, a combinação linear livre da ionosfera para tripla frequência considerando as três portadoras do GPS (L1, L2 e L5) e outras. A combinação de tripla frequência permite eliminar o efeito de segunda ordem da ionosfera, contudo, a incerteza propagada desta combinação é de pior qualidade do que o próprio valor do efeito. Foram realizados processamentos de dados no modo PPP estático e cinemático visando avaliar a influência dos efeitos de ordem superior no ciclo solar 24. Os dados GPS foram corrigidos dos efeitos ionosféricos utilizando o software "RINEX_HO" disponível no NGS-NOAA-TOOLBOX. Os resultados mostraram que a negligência dos efeitos ionosféricos de ordem superior no PPP pode provocar variações da ordem de milímetros a centímetros considerando períodos com baixa e alta atividade ionosférica, respectivamente
    corecore