57 research outputs found

    Femtosecond laser deposition of TiO2 by laser induced forward transfer

    Get PDF
    Femtosecond lasers have been used for laser induced forward transfer (LIFT) of TiO2, a wide-band semiconductor with many industrial and research applications. TiO2 polycrystalline thin films on quartz (obtained by pulsed laser deposition) were used as donors and both quartz and fluorine-doped tin dioxide coated glass substrates as acceptors. LIFT was performed at the laser wavelengths of 248 and 800 nm with pulses of 450 and 300 fs respectively. The transferred material was characterized by energy-dispersive X-ray spectroscopy, X-ray diffraction and micro-Raman spectroscopy to determine the composition and crystalline quality, and by scanning electron microscopy and atomic force microscopy to assess the surface morphology. The relation between these properties and the laser transfer conditions, including wavelength, pulse energy and acceptor substrate, are presented. © 2010 Elsevier B.V.Peer Reviewe

    Study of deposition parameters for the fabrication of ZnO thin films using femtosecond laser

    Get PDF
    Femtosecond (fs) pulsed laser deposition (fs-PLD) of ZnO thin film on borosilicate glass substrates is reported in this work. The effect of important fs-PLD parameters such as target–substrate distance, laser pulse energy and substrate temperature on structure, morphology, optical transparency and luminescence of as-deposited films is discussed. XRD analysis reveals that all the films grown using the laser energy range 120–230 μJ are polycrystalline when they are deposited at room temperature in a ~10−5 Torr vacuum. Introducing 0.7 mTorr oxygen pressure, the films show preferred c-axis growth and transform into a single-crystal-like film when the substrate temperature is increased to 100 °C. The scanning electron micrographs show the presence of small nano-size grains at 25 °C, which grow in size to the regular hexagonal shape particles at 100 °C. Optical transmission of the ZnO film is found to increase with an increase in crystal quality. Maximum transmittance of 95 % in the wavelength range 400–1400 nm is achieved for films deposited at 100 °C employing a laser pulse energy of 180 μJ. The luminescence spectra show a strong UV emission band peaked at 377 nm close to the ZnO band gap. The shallow donor defects increase at higher pulse energies and higher substrate temperatures, which give rise to violet-blue luminescence. The results indicate that nano-crystalline ZnO thin films with high crystalline quality and optical transparency can be fabricated by using pulses from fs lasers

    Detailed Studies of the Plume Deflection Effect During sub-ps Laser Ablation of Si Target

    No full text

    ZnO nanorod micropatterning via laser-induced forward transfer

    No full text

    Via hole formation in silicon carbide by laser micromachining

    No full text
    • …
    corecore