122 research outputs found

    Rapid meridional transport of tropical airmasses to the Arctic during the major stratospheric warming in January 2003

    Get PDF
    International audienceWe present observations of unusually high values of ozone and N2O in the middle stratosphere that were observed by the airborne submillimeter radiometer ASUR in the Arctic. The observations took place in the meteorological situation of a major stratospheric warming that occurred in mid-January 2003 and was dominated by a wave 2 event. On 23 January 2003 the observed N2O and O3 mixing ratios around 69° N in the middle stratosphere reached maximum values of ~190 ppb and ~10 ppm, respectively. The similarities of these N2O profiles in a potential temperature range between 800 and 1200 K with N2O observations around 20° N on 1 March 2003 by the same instrument suggest that the observed Arctic airmasses were transported from the tropics quasi-isentropically. This is confirmed by 5-day back trajectory calculations which indicate that the airmasses between about 800 and 1000 K had been located around 20° N 3?5 days prior to the measurement in the Arctic. Calculations with a linearized ozone chemistry model along calculated as well as idealized trajectories, initialized with the low-latitude ASUR ozone measurements, give reasonable agreement with the Arctic ozone measurement by ASUR. PV distributions suggest that these airmasses did not stay confined in the Arctic region which makes it unlikely that this dynamical situation lead to the formation of dynamically caused pockets of low ozone

    Trend in ice moistening the stratosphere – constraints from isotope data of water and methane

    Get PDF
    Water plays a major role in the chemistry and radiative budget of the stratosphere. Air enters the stratosphere predominantly in the tropics, where the very low temperatures around the tropopause constrain water vapour mixing ratios to a few parts per million. Observations of stratospheric water vapour show a large positive long-term trend, which can not be explained by change in tropopause temperatures. Trends in the partitioning between vapour and ice of water entering the stratosphere have been suggested to resolve this conundrum. We present measurements of stratospheric H_(2)O, HDO, CH_4 and CH_(3)D in the period 1991–2007 to evaluate this hypothesis. Because of fractionation processes during phase changes, the hydrogen isotopic composition of H_(2)O is a sensitive indicator of changes in the partitioning of vapour and ice. We find that the seasonal variations of H_(2)O are mirrored in the variation of the ratio of HDO to H_(2)O with a slope of the correlation consistent with water entering the stratosphere mainly as vapour. The variability in the fractionation over the entire observation period is well explained by variations in H_(2)O. The isotopic data allow concluding that the trend in ice arising from particulate water is no more than (0.01±0.13) ppmv/decade in the observation period. Our observations suggest that between 1991 and 2007 the contribution from changes in particulate water transported through the tropopause plays only a minor role in altering in the amount of water entering the stratosphere

    Characterization of middle‐atmosphere polar warming at Mars

    Full text link
    We characterize middle‐atmosphere polar warming (PW) using nearly three Martian years of temperature observations by the Mars Climate Sounder. We report the observed structure of PW and share hypotheses as to possible explanations, which have yet to be tested with global dynamical models. In the data, PW manifested between p  = 15 Pa and p  = 4.8×10 –3  Pa. The latitude where PW maximized shifted poleward with decreasing pressure. The nightside magnitude was larger than the dayside magnitude. The maximum nightside magnitudes ranged from 22 to 67 K. As expected, the annual maximum magnitude in the north occurred during late‐local fall to middle‐local winter. In the south it occurred during late‐local winter. Also as expected, the maximum magnitude near MY 28's southern winter solstice was smaller than that at that same year's northern winter solstice, when a global dust storm was occurring. Unexpectedly, the maximum magnitude at southern winter solstice was comparable to that at northern winter solstice for both MY 29 and MY 30, years that did not experience global dust storms but certainly experienced greater dust loading during L s  = 270° than L s  = 90°. Another unexpected result was a hemispheric asymmetry in PW magnitude during most of the observed equinoxes. This paper also provides tables of (1) averaged temperatures as a function of latitude, pressure, and season, and (2) the maximum polar warming features as a function of pressure and season. These tables can be used to validate GCM calculations of middle‐atmosphere temperatures and constrain calculations of unobserved winds. Key Points Polar warming is characterized based on nearly three MYs of MCS temperatures Average temperatures are provided for validation of modeled temperatures Polar warming characteristics are provided for constraint of modeled windsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97505/1/jgre20016.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97505/2/SPICAM_temperatures_v_latitude.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97505/3/PolarWarming_CrossSections_Dayside.pd

    Constraints for the photolysis rate and the equilibrium constant of ClO-dimer from airborne and balloon-borne measurements of chlorine compounds

    Get PDF
    We analyze measurements of ClO across the terminator taken by the Airborne Submillimeter Radiometer (ASUR) in the activated vortices of the Arctic winters of 1995/1996, 1996/1997, and 1999/2000 to evaluate the plausibility of various determinations of the ClO-dimer photolysis cross section and the rate constant controlling the thermal equilibrium between ClO-dimer and ClO. We use measured ClO during sunlit conditions to estimate total active chlorine (ClOx). As the measurements suggest nearly full chlorine activation in winter 1999/2000, we compare ClOx estimates based on various photolysis frequencies of ClO-dimer with total available inorganic chlorine (Cly), estimated from an N2O-Cly correlation established by a balloon-borne MkIV interferometer measurement. Only ClO-dimer cross sections leading to the fastest photolysis frequencies in the literature (including the latest evaluation by the Jet Propulsion Laboratory) give ClOx mixing ratios that overlap with the estimated range of available Cly. Slower photolysis rates lead to ClOx values that are higher than available Cly. We use the ClOx calculated from sunlit ClO measurements to estimate ClO in darkness based on different equilibrium constants, and compare it with ASUR ClO measurements before sunrise at high solar zenith angles. Calculations with equilibrium constants published in recent evaluations of the Jet Propulsion Laboratory give good agreement with observed ClO mixing ratios. Equilibrium constants leading to a higher ClO/ClOx ratio in darkness yield ClO values that tend to exceed observed abundances. Perturbing the rates for the ClO + BrO reaction in a manner that increases OClO formation and decreases BrCl formation leads to lower ClO values calculated for twilight conditions after sunset, resulting in better agreement with ASUR measurements

    Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder

    Get PDF
    The first systematic observations of the middle atmosphere of Mars (35–80km) with the Mars Climate Sounder (MCS) show dramatic patterns of diurnal thermal variation, evident in retrievals of temperature and water ice opacity. At the time of writing, the data set of MCS limb retrievals is sufficient for spectral analysis within a limited range of latitudes and seasons. This analysis shows that these thermal variations are almost exclusively associated with a diurnal thermal tide. Using a Martian general circulation model to extend our analysis, we show that the diurnal thermal tide dominates these patterns for all latitudes and all seasons

    Impact of Gravity Waves on the Middle Atmosphere of Mars: A Non-Orographic Gravity Wave Parameterization Based on Global Climate Modeling and MCS Observations

    Get PDF
    The impact of gravity waves (GW) on diurnal tides and the global circulation in the middle/upper atmosphere of Mars is investigated using a general circulation model (GCM). We have implemented a stochastic parameterization of non‐orographic GW into the Laboratoire de MĂ©tĂ©orologie Dynamique (LMD) Mars GCM (LMD‐MGCM) following an innovative approach. The source is assumed to be located above typical convective cells ( urn:x-wiley:jgre:media:jgre21298:jgre21298-math-0001250 Pa), and the effect of GW on the circulation and predicted thermal structure above 1 Pa ( urn:x-wiley:jgre:media:jgre21298:jgre21298-math-000250 km) is analyzed. We focus on the comparison between model simulations and observations by the Mars Climate Sounder (MCS) on board Mars Reconnaissance Orbiter during Martian Year 29. MCS data provide the only systematic measurements of the Martian mesosphere up to 80 km to date. The primary effect of GW is to damp the thermal tides by reducing the diurnal oscillation of the meridional and zonal winds. The GW drag reaches magnitudes of the order of 1 m/s/sol above 10 urn:x-wiley:jgre:media:jgre21298:jgre21298-math-0003 Pa in the northern hemisphere winter solstice and produces major changes in the zonal wind field (from tens to hundreds of m/s), while the impact on the temperature field is relatively moderate (10–20 K). It suggests that GW‐induced alteration of the meridional flow is the main responsible for the simulated temperature variation. The results also show that with the GW scheme included, the maximum day‐night temperature difference due to the diurnal tide is around 10 K, and the peak of the tide is shifted toward lower altitudes, in better agreement with MCS observations

    The Exomars Climate Sounder (EMCS) Investigation

    Get PDF
    The ExoMars Climate Sounder (EMCS) investigation is developed at the Jet Propulsion Laboratory (Principal Investigator J. T. Schofield) in collaboration with an international scientific team from France, the United Kingdom and the USA. EMCS plans to map daily, global, pole-to-pole profiles of temperature, dust, water and CO2 ices, and water vapor from the proposed 2016 ExoMars Trace Gas Orbiter (EMTGO). These profiles are to be assimilated into Mars General Circulation Models (MGCMs) to generate global, interpolated fields of measured and derived parameters such as wind

    SCIAMACHY validation by aircraft remote measurements: design, execution, and first results of the SCIA-VALUE mission

    No full text
    International audienceFor the first time three different remote sensing instruments ? a sub-millimeter radiometer, a differential optical absorption spectrometer in the UV-visible spectral range, and a lidar ? were deployed aboard DLR's meteorological research aircraft Falcon 20 to validate a large number of SCIAMACHY level 2 and off-line data products such as O3, NO2, N2O, BrO, OClO, H2O, aerosols, and clouds. Within two main validation campaigns of the SCIA-VALUE mission (SCIAMACHY VALidation and Utilization Experiment) extended latitudinal cross-sections stretching from polar regions to the tropics as well as longitudinal cross sections at polar latitudes at about 70° N and the equator have been generated. This contribution gives an overview over the campaigns performed and reports on the observation strategy for achieving the validation goals. We also emphasize the synergetic use of the novel set of aircraft instrumentation and the usefulness of this innovative suite of remote sensing instruments for satellite validation
    • 

    corecore