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Abstract We analyze measurements of ClO across the terminator taken by the Airborne Submillimeter
Radiometer (ASUR) in the activated vortices of the Arctic winters of 1995/1996, 1996/1997, and 1999/2000
to evaluate the plausibility of various determinations of the ClO-dimer photolysis cross section and the rate
constant controlling the thermal equilibrium between ClO-dimer and ClO. We use measured ClO during
sunlit conditions to estimate total active chlorine (ClOx). As the measurements suggest nearly full chlorine
activation in winter 1999/2000, we compare ClOx estimates based on various photolysis frequencies of
ClO-dimer with total available inorganic chlorine (Cly), estimated from an N2O-Cly correlation established
by a balloon-borne MkIV interferometer measurement. Only ClO-dimer cross sections leading to the fastest
photolysis frequencies in the literature (including the latest evaluation by the Jet Propulsion Laboratory)
give ClOx mixing ratios that overlap with the estimated range of available Cly . Slower photolysis rates lead to
ClOx values that are higher than available Cly . We use the ClOx calculated from sunlit ClO measurements to
estimate ClO in darkness based on different equilibrium constants, and compare it with ASUR ClO
measurements before sunrise at high solar zenith angles. Calculations with equilibrium constants published
in recent evaluations of the Jet Propulsion Laboratory give good agreement with observed ClO mixing
ratios. Equilibrium constants leading to a higher ClO/ClOx ratio in darkness yield ClO values that tend to
exceed observed abundances. Perturbing the rates for the ClO + BrO reaction in a manner that increases
OClO formation and decreases BrCl formation leads to lower ClO values calculated for twilight conditions
after sunset, resulting in better agreement with ASUR measurements.

1. Introduction

Chlorine monoxide (ClO) is one of the most important species involved in polar stratospheric chemistry.
In the winter polar vortex, it is formed by heterogeneous reactions of inactive chlorine species on polar
stratospheric clouds [Solomon et al., 1986; McElroy et al., 1986] or cold sulfate aerosols [Drdla and Müller,
2012], followed by photolysis and the reaction with ozone. The formation of the ClO-dimer following
the self-reaction of ClO leads to the catalytic destruction of ozone via the ClO-dimer cycle [Molina and
Molina, 1987]:

ClO + ClO + M
kf
⇄
kd

Cl2O2 + M (1)

Cl2O2 + h𝜈
J
→ Cl + ClOO (2)

ClOO + M → Cl + O2 + M (3)

2 ⋅ (Cl + O3 → ClO + O2) (4)

net ∶ 2O3 + h𝜈 → 3O2. (5)
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The ClO-dimer cycle is the most important catalytic cycle in polar ozone destruction [e.g., World Meteoro-
logical Organization (WMO), 2010; Stratospheric Processes and their Role in Climate (SPARC), 2009]. The speed
at which the catalytic ozone destruction takes place is primarily determined by the photolysis rate (J) driv-
ing the decomposition of the ClO-dimer in reaction (2). Throughout this paper, ClO-dimer and Cl2O2 will be
used interchangeably. The photolysis rate primarily depends on the absorption cross sections of Cl2O2. As
it has the unit of inverse seconds, it is often called photolysis frequency; in the following these terms will be
used synonymously. We note that the photolysis rates and equilibrium constants dealt with in this paper are
with reference to the molecular structure ClOOCl. In addition to this isomer, other ClO-dimer isomers have
been identified [McGrath et al., 1988], although they are thought to be too small in abundance to affect the
balance between ClO and its dimer [SPARC, 2009] and will not be part of this analysis.

During daytime the ClO concentration is determined by the ratio of the destruction of ClO-dimer through
photolysis (reaction (2)) and thermal dissociation (back reaction in equation (1)), and the formation of
ClO-dimer through the forward reaction in equation (1). In darkness, when photolysis shuts off, the ClO con-
centration approaches an equilibrium with its dimer [Brune et al., 1990; Vömel et al., 2001], which is governed
by an equilibrium constant given by

Keq =
kf

kd
, (6)

where kf is the formation rate and kd is the dissociation rate of Cl2O2.

Many measurements of the Cl2O2 absorption cross sections have been performed over the last quarter
century. Most of the results from the late 1980s and 1990s were incorporated into the recommendation
of the Jet Propulsion Laboratory (JPL) catalogue released in 2002 [Sander et al., 2003], which also stayed
unchanged in the releases of 2006 [Sander et al., 2006] and 2009 [Sander et al., 2009]. Using these reaction
rates, chemical transport models for the polar stratosphere have been reasonably successful in simulating
the observed rate of chemical loss of polar ozone in winter and spring [e.g., Chipperfield et al., 2005; Frieler
et al., 2006; Tripathi et al., 2006]. The laboratory measurement of the Cl2O2 cross section by Pope et al. [2007]
caused significant new activity in this field [SPARC, 2009]. The J value for Cl2O2 based on the Pope et al. [2007]
measurement would slow down modeled catalytic ozone destruction significantly, leading to major dis-
crepancies between observed and modeled ozone loss [e.g., von Hobe et al., 2007]. However, subsequent
laboratory measurements by Chen et al. [2009] and Papanastasiou et al. [2009] suggest a much higher pho-
tolysis frequency for Cl2O2, calling the validity of the measurements by Pope et al. [2007] into question. The
cross sections by Papanastasiou et al. [2009] are now recommended for use in kinetic studies in the new
version of the kinetics evaluation by the Jet Propulsion Laboratory [Sander et al., 2011]. The most recent lab-
oratory measurements by Young et al. [2014] yielded cross sections at visible wavelengths in addition to
the UV, which provides guidance for extrapolating cross sections in the UV to higher wavelengths. Figure 1
summarizes the ClO-dimer absorption cross sections published in the literature. Significant differences
exist between measurements of the last 5 years and other published laboratory measurements that show
lower J values [e.g., Huder and DeMore, 1995; Pope et al., 2007; von Hobe et al., 2009]. As the photolysis
rate that controls reaction (2) tends to be the rate-limiting step in the ClO-dimer cycle, the Cl2O2 cross
section has a significant effect on the speed at which ozone loss progresses in the polar winter stratosphere
[e.g., von Hobe et al., 2007].

Numerous field campaigns have been designed to provide quantitative constraints on the photochem-
istry of ClO and related species, given the importance of these processes for our understanding of polar
ozone loss. Pioneering work was done by Kawa et al. [1992], who performed a comprehensive examination
of the consistency of chlorine partitioning using published rate parameters. Follow-on studies examined
rate parameters related to chlorine partitioning using ground-based microwave measurements [Shindell
and deZafra, 1996], balloon-borne measurements [Pierson et al., 1999], and airborne measurements of ClO
[Avallone and Toohey, 2001]. Vömel et al. [2001] analyzed balloon-borne measurements of ClO at sunset to
isolate the parameter kf and showed it to be in good agreement with laboratory measurements by Bloss
et al. [2001], which were incorporated into the JPL recommendation of 2002 [Sander et al., 2003]. Stimpfle
et al. [2004] analyzed airborne in situ measurements of ClO and its dimer and concluded that the photol-
ysis frequencies based on cross sections recommended by Sander et al. [2003] were in good agreement
with measurements, assuming a dimer formation rate recommended by DeMore et al. [2000]. von Hobe
et al. [2007] evaluated laboratory data together with theoretical studies and field measurements and found
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Figure 1. Absorption cross sections of ClO-dimer as published in the literature (Pope07: Pope et al. [2007], HD95: Huder
and DeMore [1995], Hobe09: von Hobe et al. [2009], JPL02: Sander et al. [2003], Burkholder90: Burkholder et al. [1990],
Papanastasiou09: Papanastasiou et al. [2009], Young14: Young et al. [2014]). Solid lines indicate the wavelength range
of the measurements, while dashed lines show the extrapolation to higher wavelengths used to calculate photolysis
frequencies. In the case of Young14, the dashed lines additionally show an interpolation between the measurements at
UV and visible wavelengths. Symbols show absolute cross sections that were measured at isolated frequencies (Lien09:
Lien et al. [2009], Wilmouth09: Wilmouth et al. [2009], Chen09: Chen et al. [2009], Jin10: Jin et al. [2010]). The inset shows
the region around 248 nm in greater detail.

that photolysis cross sections between Burkholder et al. [1990] and the recommendation of Sander et al.
[2006] were plausible. Schofield et al. [2008] and Kremser et al. [2011] analyzed airborne in situ measure-
ments and ground-based microwave measurements of ClO, respectively, and suggested ratios of J∕kf up
to a factor of 2 larger than recommended in Sander et al. [2006]. Recently, Suminska-Ebersoldt et al. [2012]
analyzed airborne ClO in situ measurements during sunrise and suggested photolysis frequencies that are
higher than the ones based on cross sections by Pope et al. [2007]. They found that photolysis frequencies
between the ones based on cross sections by Papanastasiou et al. [2009] and based on von Hobe et al. [2009]
scaled to the absolute cross-section measurement by Lien et al. [2009] gave reasonable agreement with
their measurements.

Here we present measurements of ClO across the terminator in the polar stratosphere, taken by the Airborne
SUbmillimeter Radiometer (ASUR) in the Arctic winters of 1995/1996, 1996/1997, and 1999/2000. We use
ClO measurements at low solar zenith angles to estimate the total active chlorine, ClOx , defined as

ClOx = Cl + ClO + 2Cl2O2 + OClO + BrCl + HOCl. (7)

As concentrations of Cl atoms, OClO, BrCl, and HOCl tend to be much smaller than of ClO and Cl2O2 in the
winter polar lower stratosphere; for practical purposes, ClOx will be dominated by the sum of ClO and twice
its dimer. We estimate total available inorganic chlorine Cly using measurements of N2O in January 2000
and a N2O-Cly correlation established by a balloon measurement of the MkIV interferometer in December
1999 [Salawitch et al., 2002]. We compare various ClOx estimates for different J values of ClO-dimer, based
on absorption cross sections given in JPL 2002 [Sander et al., 2003], Huder and DeMore [1995], von Hobe et al.
[2009], Pope et al. [2007] (yields lowest J value), and Burkholder et al. [1990] and Papanastasiou et al. [2009]
(yield highest J values), with the Cly estimate. As the ClO measurements in January 2000 show nearly full
chlorine activation, the comparison of ClOx with Cly provides firm conclusions on the consistency between
various laboratory measurements, atmospheric observations, and photochemical theory.

We give particular attention to the recent work by Lien et al. [2009, hereinafter Lien09], which provided an
absolute cross-section measurement of ClO-dimer at 248 nm (purple dots in Figure 1). The Lien09 cross
section is higher than other absolute cross-section measurements in the literature [e.g., Burkholder et al.,
1990; Papanastasiou et al., 2009] as well as past JPL recommendations [Sander et al., 2003]. Most laboratory
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determinations of the absorption cross-section spectrum of ClO-dimer are relative measurements, scaled
to match an absolute value around 248 nm. The higher cross section by Lien09 would lead to higher J val-
ues and hence a faster ClO-dimer cycle, when relative absorption cross-section spectra of ClO-dimer are
scaled according to their results. We note that absolute cross-section measurements recently published by
Wilmouth et al. [2009] are more in line with previous measurements at 248 nm (pink diamonds in Figure 1).

Another uncertainty in the behavior of ClO arises from the equilibrium constant (Keq), which determines the
thermally controlled partitioning of ClO and its dimer in reaction (1), leading to uncertainties in the amount
of ClO present in twilight and nighttime conditions. Estimates of the equilibrium constant from laboratory
measurements and atmospheric ClO measurements differ. The equilibrium constant measured by Cox and
Hayman [1988] is in very good agreement with atmospheric measurements by Avallone and Toohey [2001]
at stratospheric temperatures [von Hobe et al., 2007], while values of Keq published in recent JPL recommen-
dations [Sander et al., 2006, 2009] are higher. Atmospheric measurements by von Hobe et al. [2005] yielded
a much lower equilibrium constant at stratospheric temperatures; however, von Hobe et al. [2007] note that
equilibrium might not have been established in these measurements. Nighttime observations of ClO and its
dimer by Stimpfle et al. [2004] using airborne in situ instrumentation show good agreement with equilibrium
constants by Cox and Hayman [1988] and Avallone and Toohey [2001], while nighttime ClO observations by
Suminska-Ebersoldt et al. [2012] require the equilibrium constant based on Plenge et al. [2005] to yield ClOx

amounts that are below the total available inorganic chlorine. Satellite measurements of nighttime ClO from
the Sub-Millimetre Radiometer instrument on the Odin satellite were found to be in agreement with model
calculations using Keq from von Hobe et al. [2005] at temperatures around 210 K and from Cox and Hayman
[1988] for lower temperatures, while Keq from the JPL recommendation [DeMore et al., 2000] leads to an
underestimate of observed nighttime ClO [Berthet et al., 2005]. ClO measurements from the Microwave Limb
Sounder on EOS-Aura were used to analyze the temperature dependence of Keq [Santee et al., 2010]. Good
agreement is achieved with the formulation of Avallone and Toohey [2001] but agreement is still within
the error bars when the JPL recommendations by Sander et al. [2006, 2009] are considered, while Keq from
von Hobe et al. [2005] leads to higher nighttime ClO than observed.

We use a one-dimensional photochemical model to calculate the variation of ClO with solar zenith angle
(SZA) across the day-night and night-day transitions for the different photolysis cross sections and equilib-
rium constants. We compare the calculations with the ClO measurements across the terminator and draw
conclusions on the plausibility of various determinations of Keq.

The day-night transition of ClO is to a large extent influenced by the formation rate of ClO-dimer (forward
reaction in equation (1)). This termolecular reaction can be parameterized as

kf =
k0[M] ⋅ k∞

k0[M] + k∞
⋅ 0.6(1+(lg(k0[M]∕k∞))2)−1

, (8)

where [M] is the molecular air density. Sander et al. [2003] give the low-pressure limit as
k0 = 1.6 ⋅ 10−32(T∕300)−4.5 cm6

molecules2⋅s
and the high-pressure limit as k∞ = 2 ⋅ 10−12(T∕300)−2.4 cm3

molecules⋅s
,

where T is the temperature in K. Subsequent revisions to this reference have only provided updates to the
high-pressure limit, which has only a minor influence on chemistry in the stratosphere, so all analyses in the
following are performed with reference to the ClO-dimer formation rate of Sander et al. [2003].

The behavior of ClO across the day-night transition is also influenced by the reaction between ClO and
BrO. This reaction has three branches [Friedl and Sander, 1989], yielding the products OClO, ClOO, and
BrCl, respectively,

ClO + BrO → Br + OClO (9)

→ Br + ClOO (10)

→ BrCl + O2. (11)

The branching ratios of the ClO + BrO reaction are uncertain and have been previously examined based on
measurements of OClO obtained during twilight [Salawitch et al., 1988] and nighttime [Canty et al., 2005].
The decrease of ClO versus SZA during the day-night transition is sensitive to the ClO-dimer formation rate
and the rate of reaction of ClO with BrO, and uncertainties in the various branches of the ClO + BrO reaction
will lead to different behavior. We will study this influence using the one-dimensional model in comparison
with the ASUR ClO measurements.
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The paper is structured in the following way: In section 2, we describe the instruments and measure-
ments used in this study. In particular, we introduce the Airborne SUbmillimeter Radiometer (ASUR) and its
measurement characteristics, as well as its measurements of ClO and other gases relevant to this study in
section 2.1. We describe the MkIV balloon-borne Fourier transform interferometer and its measurements in
section 2.2. This section also describes the derivation of Cly from the MkIV measurements. Section 3 deals
with the model simulations employed to interpret the measurements. In section 3.1, we derive ClOx from
ASUR ClO measurements at low solar zenith angles using a photochemical model in diurnal steady state
[Stimpfle et al., 2004; Canty et al., 2005] and compare it with available Cly to draw conclusions on the plau-
sibility of various photolysis frequencies. We introduce model simulations of the diurnal variation of ClO
with the MISU-1D model [Jonsson, 2006; Khosravi et al., 2013] in section 3.2. These simulations are used to
interpret ASUR ClO measurement sequences across the sunrise terminator and draw conclusions on the
plausibility of various formulations of Keq in section 3.3. Section 3.4 discusses calculations with the same
model to evaluate the ClO-BrO cycle based on an ASUR ClO measurement sequence across the sunset
terminator. We summarize our conclusions in section 4.

2. Measurements
2.1. Airborne Submillimeter Measurements
The key measurements used in this study were obtained by the Airborne SUbmillimeter Radiometer (ASUR)
[von König et al., 2000, and references therein]. The instrument uses a liquid helium cooled detector to mea-
sure the emission of submillimeter radiation in a frequency range between 604.3 and 662.3 GHz. Before
1999, the frequency range was 624–654 GHz. An acousto-optical spectrometer is used for the acquisition
of spectra. A filter bank was also available until 1997. The ASUR instrument is operated on board an aircraft
flying at 10–12 km altitude to avoid signal absorption by tropospheric water vapor. Observations were per-
formed through a high-density polyethylene window on the starboard side of the aircraft. Atmospheric
measurements were taken at a stabilized elevation angle of 12◦; hence, the location of the origin of the
stratospheric signal is offset from the flight track. For signals originating 10 km above the aircraft, the hori-
zontal offset is about 47 km perpendicular to the flight track. An atmospheric measurement is bracketed by
measurements of calibration loads at ambient and liquid nitrogen temperatures. This measurement cycle
takes about 6 s to complete.

By analyzing the spectrally resolved pressure broadened emission lines with optimal estimation [Rodgers,
2000], vertical profiles of the volume mixing ratio (VMR) of ClO, HCl, ozone, N2O, and other trace gases can
be retrieved over an altitude range of about 15–40 km with a typical vertical resolution of 6–10 km in the
lower stratosphere. For the retrieval, spectra from several measurement cycles are integrated to improve the
signal-to-noise ratio. This integration time determines the horizontal resolution of the measurement along
the flight track. With an aircraft speed of about 700 km h−1, ClO measurements have horizontal resolutions
of ∼50 km, while for N2O horizontal resolutions of ∼25 km and for HCl and ozone horizontal resolutions of
less than 20 km are achieved.

The accuracy of the ASUR measurement is composed of the statistical error, which is mainly determined
by the noise in the measurement and the quality of the fit, and by systematic error sources. Estimates of
the systematic error include contributions from uncertainties in the observation angle, the actual flight alti-
tude, and uncertainties in the calibration system, such as the reflectivity of the cold calibration load. The
systematic error also includes uncertainties in the model parameters used for the inversion, e.g., spectro-
scopic parameters like line intensities and pressure broadening coefficients, meteorological profiles, and the
parameterization of continuum absorption [von König, 2001]. Adding these sources quadratically and taking
the statistical error into account results in an accuracy of 10% or 0.15 ppb, whichever is higher, for a typical
ClO profile in an altitude range between 15 and 40 km. For HCl, the accuracy is approximately 15% or
0.1 ppb, whichever is higher, while for N2O, these values are 15% and 30 ppb [von König, 2001; Kleinböhl
et al., 2002]. These uncertainty estimates, as well as all others in this paper, are considered 1𝜎 errors.

For this study new ClO retrievals were performed such that all retrievals are based on a consistent set of
input parameters. Figure 2 (left) shows the a priori profile and the a priori error used in the new set of
retrievals. The a priori error is a compromise between the one used in the original retrievals from the SAGE-III
Ozone Loss and Validation Experiment (SOLVE) campaign in 1999/2000 [Bremer et al., 2002], and the one
used for the analyses in the 1990s [Urban, 1998]. The resulting averaging kernels for a typical ClO retrieval
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Figure 2. (left) ClO a priori profile and a priori error (marked as error bars) used in the ASUR retrieval. (middle) ClO aver-
aging kernels resulting from the ASUR retrieval. Kernels at higher altitude levels are drawn in successively lighter gray.
(right) Full width at half maximum (FWHM) of the averaging kernels.

are shown in Figure 2 (middle). The kernel centered at 20 km altitude has a full width at half maximum of

about 7–8 km (Figure 2 (right)).

Table 1 gives an overview on the research flights considered in this paper, during which the diurnal variation

of ClO was measured by the ASUR instrument. These flights took place during three different Arctic winters.

During two of the flights transitions from night to day were observed, while during the other flight a transi-

tion from day to night was measured. A fourth flight that took place on 25 February 1996 is not considered

because it seemed to have encountered quite variable conditions of activated chlorine [Urban, 1998].

All flights were performed inside the polar vortex and encountered perturbed chlorine chemistry. The

flights in 1996 and 1997 were short flights on board the German research aircraft Falcon. These flights

were designed to measure the diurnal variation of ClO [Urban, 1998]. They were conducted west of Kiruna,

Sweden, and roughly followed a circle of constant latitude. On one leg of a flight, ClO was measured almost

continuously over the terminator, while on the opposite leg, other species were measured, interspersed

with occasional measurements of ClO. For the flight in 1997, the track was optimized based on meteo-

rological wind analyses to allow nearly the same air masses to be measured on both flight legs [Eyring,

1999]. The flight in 2000 was performed on board the NASA DC-8 research aircraft and had multiple objec-

tives. Continuous ClO measurements were made along a profile of nearly constant longitude, capturing a

night-day transition. Other species, in particular HCl and N2O, were measured by ASUR in the vicinity of the

ClO observations.

Figure 3 shows the retrieved ClO profiles from ASUR measurements versus SZA along each flight track across

the terminator, together with the location and equivalent latitude of each measurement. Equivalent latitude

is a measure of the area enclosed by a line of constant potential vorticity, where this area is assumed to be

circular and centered on the pole.

Table 1. Key Parameters of the ASUR Flights Where ClO Across the Terminator was Measured

Campaign Date of Flight Locationa Aircraft Type of Transition

GOME validation 2 Mar 1996 70.3◦N,16.9◦E DLR Falcon Night-Day
ILAS validation 25 Feb 1997 69.7◦N,3.8◦E DLR Falcon Day-Night
SOLVE 23 Jan 2000 69.0◦N,16.8◦E NASA DC-8 Night-Day

aLocation gives the approximate location where a solar zenith angle of 90◦ was reached.
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Figure 3. Color-contoured ClO volume mixing ratio profiles
retrieved from ASUR measurements on flights across the ter-
minator on (a) 2 March 1996, (b) 25 February 1997, and (c) 23
January 2000. Note that the color scale in Figure 3c is differ-
ent from the one in Figures 3a and 3b. Black dashes on the
contour plot show the locations of the actual measurements.
The dotted line indicates the astronomical terminator. The
line plots show latitude (black), equivalent latitude at 475 K
(green), and equivalent latitude at 550 K (red) of each mea-
surement with reference to the left y axis, as well as the
longitude (blue) of each measurement with reference to the
right y axis.

In March 1996, a sunrise flight was performed.
The equivalent latitudes both at 475 K and 550 K
potential temperature (corresponding to about
19 and 22 km altitude) stay between 70◦ and 75◦

throughout the flight. The maximum ClO observed
was about 1.1 ppb at 87.5◦ SZA at 20 km altitude.

The February 1997 flight was a sunset flight.
Homogeneous conditions in terms of equiva-
lent latitude were recorded for low solar zenith
angles, while equivalent latitudes increased
slightly toward higher solar zenith angles. The
route for this flight was planned such that the out-
bound leg measured roughly the same air masses
at nearly constant SZAs as the inbound leg over
the terminator. Chlorine activation showed lit-
tle inhomogeneity along this outbound leg, with
ClO mixing ratios varying only by about ±5% (not
shown). These mixing ratios are consistent with
vortex averages of ClO observed by Santee et al.

[1997], who also reported large areas of activated
ClO to be still present at this season. Maximum ClO
values were observed to be around 0.85 ppb at
20 km between 83◦ and 86◦ SZA. Note that the ClO
VMR across the terminator changes more slowly in
sunset conditions compared to sunrise conditions.

The flight in January 2000 again was a sunrise
flight. Maximum ClO values of about 1.8 ppb were
observed at 20 km at SZAs of 83◦–85◦. Figure 4
shows a retrieved HCl profile in the vicinity of the
ClO measurements. HCl mixing ratios are essen-
tially zero in a region around 18–20 km altitude.
High ClO mixing ratios were measured together
with very low HCl mixing ratios throughout the
vortex in mid- to late-January 2000 [Bremer et al.,
2002]. This suggests that conditions inside the
vortex were close to full activation. This is sup-
ported by in situ measurements of ClNO3 from
the ER-2 high-altitude aircraft. ClNO3 mixing ratios
at lower stratospheric altitudes inside the vortex
were reported to be below the detection limit of
20 parts per trillion (ppt) for flights conducted in
mid- to late-January 2000 (including a flight on 23
January 2000) [Wilmouth et al., 2006]. Equivalent
latitudes along the ClO measurement sequence by
ASUR are somewhat variable. However, the low-
est equivalent latitude during this measurement
sequence was 70◦, well inside the Arctic vortex
in January 2000 [Kleinböhl et al., 2002]. This sug-
gests that the flight on 23 January 2000 is suitable
for a meaningful analysis despite variations in
equivalent latitude.
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Figure 4. Profiles of N2O at 68.2◦N, 17.1◦E, and of HCl at
67.2◦N, 20.0◦E, retrieved from ASUR measurements on 23
January 2000. Error bars give the estimated accuracy.

2.2. Balloon-Borne FTIR Measurements
Ancillary measurements that constrain the total
available inorganic chlorine (Cly) in the lower
stratosphere were performed by the JPL MkIV
Fourier transform interferometer [Toon, 1991].
The MkIV covers a spectral range between 650
and 5650 cm−1 with a spectral resolution of
∼0.01 cm−1. It is operated on a high-altitude bal-
loon and views the Sun through the atmospheric
limb at sunset or sunrise. Due to the long viewing
path through the atmosphere, MkIV provides high
sensitivity to more than 30 trace gases, among
them the Cly constituents HCl, ClNO3, ClO, and
HOCl, as well as stratospheric tracers like N2O
and CH4.

On 3 December 1999, MkIV performed a sun-
set flight from Esrange, Sweden (67.9◦N, 21.1◦E)
[Coffey et al., 2002; Salawitch et al., 2002]. This flight
occurred at the onset of the SOLVE winter and

measured largely unprocessed air inside the polar vortex, hence giving a good constraint on the available
inorganic chlorine. Another MkIV flight from Esrange was performed on 15 March 2000 at sunrise during the
breakup of the vortex. Figure 5 shows retrievals of N2O, HCl, ClNO3, ClO, and HOCl from the December 1999
flight. Error bars give the accuracy for each individual species, primarily driven by uncertainties in the spec-
troscopic parameters used for retrieval. Based on the measured ClO during the balloon flight, we calculate
the mixing ratio of ClO-dimer (using photolysis cross sections from [Sander et al., 2003]). Chlorine activation
was minimal during this time, with a maximum value of 0.3 ppb retrieved between 20 and 25 km altitude.
The contribution of ClO-dimer to overall Cly is very small. Nevertheless, for the sake of completeness, we
have defined Cly as

Cly = HCl + ClNO3 + ClO + HOCl + 2Cl2O2. (12)

This Cly profile is also given in Figure 5 (middle) together with its accuracy, derived from the accuracy of
the individual Cly constituents. The maximum value for Cly is 3.67 ± 0.18 ppb between 25 and 30 km alti-
tude. This is consistent with Cly estimated from ground-based measurements of organic chlorine in the
troposphere, if a stratospheric age of air of 5–6 years is assumed [Montzka et al., 1999; O’Doherty et al., 2004].

Figure 5. (left) N2O profile measured by the MkIV instrument during the balloon flight on 3 December 1999. (middle)
MkIV measurements of HCl, ClNO3, ClO, and HOCl from the same balloon flight, and the derived Cly . (right) Cly based
on the MkIV measurements plotted versus N2O (black), and second-order polynomial fit of the N2O-Cly correlation
(solid gray) and its error (dotted gray).
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Figure 5 (right) shows the N2O-Cly correlation based on the N2O profile measured by MkIV on the same bal-
loon flight. Uncertainties in the correlation (crosses in Figure 5) are largely driven by the accuracy of N2O
in the lower stratosphere, and by the accuracy of the Cly at higher altitudes. Fitting the correlation with a
second-order polynomial yields

VMRCly
= 3.668 ⋅ 10−9 − 0.001827 ⋅ VMRN2O − 30343 ⋅ VMR2

N2O, (13)

where both Cly and N2O are given in units of 1. The correlation is valid between 4 and 317 ppb N2O. The fit
is shown in Figure 5 (right) together with its uncertainty, derived as a maximum error from the individual
accuracies in N2O and Cly .

3. Comparisons With Photochemical Model Calculations
3.1. Comparison of ClOx With Cly

To quantify the plausibility of various photolysis frequencies based on our current understanding of chlo-
rine chemistry, we compare ClOx inside the polar vortex with the estimate of Cly derived in the previous
section. For the calculation of ClOx profiles, we use the photochemical model given in Stimpfle et al. [2004]
and Canty et al. [2005]. It simultaneously calculates the 24 h diurnal variation, at 15 min intervals, of ClO,
ClOOCl, BrO, BrCl, and OClO using a Newton-Raphson iterative method. The model operates in a diurnal
steady state; that is, production and loss rates of these species are forced to be equal when integrated over
the full 24 h time period. These simulations are constrained to latitude, longitude, pressure, temperature,
SZA and declination, time of day, and ClO at the time and location of the ASUR observations. A profile of
BrOx (BrOx = Br + BrO + BrCl), calculated using balloon-borne differential optical absorption spectroscopy
observations of BrO over Kiruna, Sweden, on 18 February 2000 [Dorf et al., 2006] and shown in Figure S1
of the supporting information, is used to determine the relative abundance of reactive bromine species.
Both ClOx and BrOx are held constant. NOy species, such as ClNO3, are not considered (see Canty et al. [2005,
Appendix A]). The calculation of photolysis frequencies is carried out using a radiative transfer model that
includes Rayleigh scattering. In this code, photolysis does not shut down when SZA> 90◦, which allows for
the simulation of the temporal variation of the chemistry across the terminator. The ozone profiles used as
input for the calculation of the optical depth in the atmosphere are shown in Figure S1 of the supporting
information. They were taken from ozone sonde measurements over Sodankylä, Finland, up to ∼30 km
[Kivi et al., 2007], and extended to higher altitudes by ASUR ozone measurements.

As the formation rate of ClO-dimer depends quadratically on the concentration of ClO (reaction (1)) care
must be taken concerning the limited altitude resolution of the ASUR measurement. A deviation of the true
structure of a profile from the structure obtained by the retrieval might introduce errors in the calculated
ClOx. Figure 6 shows the ClO profile retrieved from the measurement at the lowest SZA of the measurement
sequence from 23 January 2000 (Figure 3). These ClO values were quite common in the sunlit part of the
Arctic vortex in January 2000 [Bremer et al., 2002; Rex et al., 2002]. To assess the impact of the averaging ker-
nels, we specify a profile on a 1 km grid and test whether it agrees with the retrieved ClO after applying the
averaging kernels. The dashed lines in Figure 6 give two examples of such profiles. One example is a 1 km
resolution profile of ClO with a peak at the same altitude as the retrieved one, only the peak is narrower
in altitude and has a higher maximum VMR (profile (a) in Figure 6). If the peak VMR of this profile was sig-
nificantly larger, then the convolved profile would not be in agreement with the profile retrieved from the
ASUR measurement. Another example is a profile with a peak of a similar magnitude as the retrieved ClO
profile but at a higher altitude, with a steeper slope above the peak (profile (b) in Figure 6). If the peak of this
profile were to be shifted to higher altitudes, the convolved profile would no longer agree with the mea-
surement. Both assumed high-resolution ClO profiles fit the retrieved ClO profile within its precision (error
bars in Figure 6) after application of the ASUR averaging kernels (dotted lines). Figure 6 (right) shows profiles
of ClOx , calculated from these high-resolution ClO profiles using photolysis frequencies based on ClO-dimer
absorption cross sections recommended in Sander et al. [2003]. We note that other ClO profiles could also fit
the profile shape measured by ASUR when convolved with the averaging kernels. Sensitivity studies show
that profiles with peaks at lower altitudes or with a more complicated structure tend to result in higher ClOx

mixing ratios at altitudes below 20 km, which makes them less probable given further considerations pre-
sented below. Profiles (a) and (b) can be considered as bracketing a range of plausible profiles that explain
the ASUR observations at the 1𝜎 level.
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Figure 6. (left) Retrieved ClO profile from ASUR measurement on 23 January 2000 at 63.2◦N, 19.1◦E, at an SZA of 83.1◦

(black). The error bars indicate the precision. Also shown are plausible profiles of higher resolution (profiles (a) and (b),
colored dashed lines, see text for description) that yield the retrieved ClO profile within the precision when convolved
with ASUR the averaging kernels (colored dotted lines). The green line gives ClO from an in situ measurement on board
the ER-2 from the same day in the vicinity of the ASUR measurement. (right) ClOx calculated from the ClO profiles (a)
(blue) and (b) (red) as well as the ER-2 ClO profile (green) using photolysis cross sections from Sander et al. [2003].

To further check the realism of these assumptions, we compare our profiles with in situ measurements of
ClO from the ER-2 high-altitude aircraft [Stimpfle et al., 2004]. The ER-2 also performed a flight on 23 January
2000, during which it conducted a descent that started roughly an hour after the high-Sun ClO measure-
ment by ASUR on that day, and was located within 2◦ latitude and longitude of that measurement [Stimpfle
et al., 2004]. The ClO profile measured by the ER-2 during descent, for SZAs between 80.7◦ and 84.1◦, is
shown as the green line in Figure 6. While showing a slightly steeper slope at low altitudes, the ClO VMRs
measured by the in situ instrument between ∼17 and 20 km are very similar to the input profiles assumed
for the simulation of the ASUR measurements, in particular profile (b). The ER-2 profile of ClO shows that
there was little small-scale variability with respect to altitude in the vicinity of the ASUR measurement. We
calculated ClOx from the ER-2 profile of ClO in the same manner as done for ASUR ClO. The result is included
in Figure 6. The ClOx calculated from the ER-2 measurement is slightly lower than from the ASUR profile
because the ER-2 measurement was located slightly south of the ASUR measurement, and hence experi-
enced a lower SZA at ∼17–20 km altitude. However, the result is still very close to the ClOx calculated from
profile (b). We note that profile (b) also qualitatively resembles the shape of several ClO profiles measured
in situ from different balloon-borne platforms during the winter 1999/2000 [Vömel et al., 2001; Vogel et al.,
2002; Rex et al., 2002], so it is likely to be a realistic representation of the vertical distribution of ClO.

The Cly profile representative for the time and location of the ASUR measurements on 23 January 2000 is
calculated using the ASUR N2O profile shown in Figure 4 and the N2O-Cly correlation given by equation (13).
Although N2O is retrieved with an altitude resolution comparable to ClO, the slope in a typical N2O profile
can be much better reproduced than a peaked profile. Consequently, the retrieved N2O is expected to be a
good estimate of the actual N2O distribution in the lower stratosphere [Greenblatt et al., 2002]. The accuracy
in the Cly profile is found by combining the uncertainty in the correlation itself (see Figure 5 (right)) and the
accuracy in the ASUR N2O profile. This results in Cly values of 3.67+0.18

−0.26 ppb at 30 km and 2.84+0.46
−0.56 ppb at

20 km altitude.

We use the high-resolution ClO profile estimates given in Figure 6 and the BrOx profile given in Figure S1
of the supporting information to calculate Cl2O2 using the aforementioned photochemical model. Subse-
quently, ClOx is calculated using equation (7). Estimates of ClOx are provided for photolysis cross sections
of Cl2O2 given by Young et al. [2014], Papanastasiou et al. [2009], Burkholder et al. [1990], JPL 2002 [Sander
et al., 2003], von Hobe et al. [2009], Huder and DeMore [1995], and Pope et al. [2007]. The photolysis fre-
quencies resulting from these cross sections are given in Table 2 for the conditions of the ASUR high-sun
measurement on 23 January 2000. The value of Keq is taken from JPL 2009 [Sander et al., 2009], all other
relevant rate constants are from JPL 2002 [Sander et al., 2003]. To estimate an accuracy of the Cl2O2, calcu-
lations have been performed with ClO VMRs enhanced and reduced by 10%, based on the accuracy of the
ASUR ClO measurement. The accuracy of the resulting ClOx , shown by the error bars in Figure 7, is based on
these estimates.
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Table 2. Photolysis Frequencies of Cl2O2 Given in s−1 as Calculated for the ASUR Measurement on 23 January
2000, at an SZA of 83.1◦ for 18 km and 20 km Altitude, Respectively

J (18 km) J (20 km)
Data Set No. J (18 km) J (20 km) Scaled to Lien09 Scaled to Lien09 Referencea

1 1.04 ⋅ 10−3 1.15 ⋅ 10−3 1.26 ⋅ 10−3 1.4 ⋅ 10−3 Young et al. [2014]
2 1.37 ⋅ 10−3 1.51 ⋅ 10−3 1.67 ⋅ 10−3 1.84 ⋅ 10−3 Papanastasiou et al. [2009]
3 1.39 ⋅ 10−3 1.53 ⋅ 10−3 1.92 ⋅ 10−3 2.12 ⋅ 10−3 Burkholder et al. [1990]
4 9.78 ⋅ 10−4 1.09 ⋅ 10−3 1.38 ⋅ 10−3 1.54 ⋅ 10−3 Sander et al. [2003]
5 6.19 ⋅ 10−4 6.98 ⋅ 10−4 9.06 ⋅ 10−4 1.02 ⋅ 10−3 von Hobe et al. [2009]
6 5.48 ⋅ 10−4 6.21 ⋅ 10−4 7.9 ⋅ 10−4 8.95 ⋅ 10−4 Huder and DeMore [1995]
7 1.62 ⋅ 10−4 1.96 ⋅ 10−4 2.34 ⋅ 10−4 2.82 ⋅ 10−4 Pope et al. [2007]

aResults are presented for the original cross sections given in the references, and with the cross sections
scaled to the measurement by Lien et al. [2009] (see text).

The impact of various Cl2O2 photolysis cross sections on calculated ClOx is represented by the different
symbols in Figure 7, based on ASUR ClO for the flight of 23 January 2000 for altitudes of (top) 20 km and
(bottom) 18 km. Below 18 km, ASUR starts to lose sensitivity; above 20 km, ClOx starts to decrease (Figure 6)
while Cly is still increasing (Figure 5), leading to less meaningful comparisons. Given the original cross
sections (diamonds in Figure 7) the only estimates of ClOx that overlap, within respective uncertainties,
the estimate for Cly are those based on the cross sections published by Papanastasiou et al. [2009] and
Burkholder et al. [1990] for profiles (a) and (b). ClOx based on JPL 2002 cross sections [Sander et al., 2003] as
well as based on cross sections by Young et al. [2014] give overlap within the accuracies when profile (b) of
Figure 6 is considered. The ClOx values found using these cross sections and ClO profile (a) are higher than
our estimate of Cly . We note that the original cross-section spectra published by Young et al. [2014], which
were used in the calculations of Figure 7, are scaled to the absolute cross sections by Papanastasiou et al.
[2009] at 248 nm because they were made after the Papanastasiou et al. [2009] cross sections were adopted
by Sander et al. [2011]. The ClOx based on Young et al. [2014] is still closer to the result based on Sander et al.
[2003] than to the one based on Papanastasiou et al. [2009], likely because the Young et al. [2014] cross
sections closely follow the ones by Sander et al. [2003] in the near-UV (Figure 1). Cross sections by von Hobe
et al. [2009] and Huder and DeMore [1995] result in values of ClOx that are much higher than available Cly .
The ClOx values calculated with the Pope et al. [2007] cross sections have to be considered unrealistically

Figure 7. Comparison of ClOx (colored symbols) with available Cly (vertical solid black lines with dotted lines giving
the accuracies) for (bottom) 18 km and (top) 20 km altitude. ClOx was calculated based on the input ClO profiles (left)
(a) and (right) (b) from Figure 6 using different cross sections according to the data set number (1: Young et al. [2014],
2: Papanastasiou et al. [2009], 3: Burkholder et al. [1990], 4: JPL02 [Sander et al., 2003], 5: von Hobe et al. [2009], 6: Huder
and DeMore [1995], and 7: Pope et al. [2007]). ClOx values marked as diamonds were calculated using the original cross
sections, while for the ones marked by squares, the cross sections were scaled to the value of Lien09.
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large given our present understanding of chlorine chemistry, which is in line with results of previous studies
[e.g., Schofield et al., 2008; Kremser et al., 2011; Suminska-Ebersoldt et al., 2012].

The squares in Figure 7 show estimates of ClOx found using the aforementioned cross sections, scaled lin-
early to the absolute cross section by Lien09. This scaling involves multiplying various cross sections by
a specific constant, multiplicative factor such that the scaled cross section matches the measurement of
Lien09 at 248 nm (Figure 1). Although Papanastasiou et al. [2009] and Burkholder et al. [1990] provide abso-
lute measurements, we report values of ClOx using their cross sections scaled to Lien09 for the sake of
completeness. The values of ClOx found using cross sections scaled to Lien09 are lower than when calcu-
lated with the original cross sections, which brings ClOx closer to estimated Cly for most cases considered in
Figure 7. Scaling the JPL 2002 cross sections to Lien09 reduces the calculated ClOx such that it now overlaps
with estimated Cly within the various uncertainties. The ClOx values based on the Young et al. [2014] cross
sections scaled to Lien09 are within the available Cly range if profile (b) is considered but still slightly higher
than available Cly at 18 km if profile (a) is considered. Cross sections reported by von Hobe et al. [2009] and
Huder and DeMore [1995], when scaled to Lien09, produce values of ClOx that are still higher than the Cly

estimate for most cases considered in Figure 7. This suggests that scaling these cross sections to Lien09 is
not sufficient to reconcile these laboratory measurements with observed atmospheric composition, given
our present understanding of ClOx photochemistry. This is in contrast to the reasonably good agreement
between observed and calculated ClO at sunrise by Suminska-Ebersoldt et al. [2012] with cross sections by
von Hobe et al. [2009] scaled to Lien09. The scaling of the Pope et al. [2007] cross sections still produces much
more ClOx than available Cly .

3.2. Study of ClO Diurnal Variations
To evaluate the diurnal variation of ClO in detail, model simulations were performed with the MISU-1D pho-
tochemical model [Jonsson, 2006; Khosravi et al., 2013]. MISU-1D is a 1-D photochemical model that uses
detailed radiative transfer calculations in the UV and visible region, in which multiple scattering and albedo
effects are incorporated [Meier et al., 1982]. The sphericity of the Earth is taken into account, which allows for
nonzero transmitted flux at SZA> 90◦. The input solar flux for the calculation of photolysis rates is adopted
from the WMO [1986] reference spectrum. The Earth-Sun distance was corrected for seasonal variations
according to Madronich [1993]. Ozone absorption cross sections and oxygen absorption cross sections in
the Schumann-Runge bands are in accordance with WMO [1986] recommendations and the Koppers and
Murtagh [1996] algorithm, respectively. The Herzberg continuum is taken from Nicolet and Kennes [1986]. A
system of stiff ordinary differential equations is solved with a variable order method. The algorithm solves
the time evolution of each species present in the reaction scheme. Most of the calculations of ClO reported
below using the MISU-1D model were repeated with the model described in section 3.1; nearly identical
results were found and our conclusions are robust regardless of model choice.

Chemical loss of polar ozone under twilight conditions is controlled almost exclusively by ClOx and BrOx

chemistry; therefore, chlorine and bromine cycles are considered for this analysis. Since all of the chlo-
rine and bromine in the model is considered to be in the active form, the model is initialized with ClOx

and BrOx by setting ClO to ClOx and BrO to BrOx , all other species are initialized to be zero. The model
runs for 5 days to converge to a solution, after which the concentration of species changes insignificantly
between subsequent days. The photolysis frequencies of ClO-dimer (reaction (2)) and Keq (reaction (1)) pri-
marily determine the relative abundances of ClO and Cl2O2 in the model, particularly during mid-day and
completely dark conditions. The full 24 h diurnal cycle with a variable Sun position is simulated with the
calculation of J values updated at each time step in the solver (every 3 min). The model is also constrained
using meteorological analyses of temperature and pressure along the flight track.

The ozone profiles and the BrOx profile used as input for the calculations are the same as in section 3.1
and shown in Figure S1 of the supporting information. Ozone concentrations are fixed throughout the
model run. The simulations were performed for conditions of the locations of the measurements (Table 1).
The measurement flights in March 1996 and February 1997 were carried out along almost constant lat-
itudes (Figure 3). The corresponding model simulations were conducted for a mean latitude of 69.8◦N
and 69.3◦N, respectively. The January 2000 flight was carried out across a latitudinal range from 71.1◦N to
63.1◦N. The simulations for this flight were conducted at the latitude of each individual ClO profile and then
reassembled to construct the observed diurnal variation of ClO.
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Figure 8. Color-contoured ClO volume mixing ratio pro-
files modeled by the MISU-1D model for the flights shown
in Figure 3. (top) Panels in each plot show the ClO mixing
ratios of the high-resolution profiles, while (bottom) pan-
els in each plot show the ClO profiles after being convolved
with the ASUR averaging kernels. The dotted line indicates
the astronomical terminator.

Contour plots of the simulated ClO profiles are pre-
sented in Figure 8 using photolysis cross sections
recommended in Sander et al. [2003] and an equi-
librium constant recommended in Sander et al.
[2009]. The top panels of the individual plots in
Figure 8 give the results on the original altitude
grid used in the model. For the January 2000 flight,
profile (b) from Figure 6 was used for subsequent
modeling. For the other flights, high-resolution
profiles were constructed analogously. To account
for the limited vertical resolution of the measure-
ments, the modeled ClO profiles were smoothed
using the a priori information and averaging kernel
functions shown in Figure 2. The bottom panels
for each flight in Figure 8 show the modeled ClO
profiles after this smoothing has been applied.

The ClO distributions in Figure 8 qualitatively
agree very well with the observed diurnal variation
of ClO (Figure 3). For the sunrise flight in 1996,
ClO starts building up slowly after astronomical
sunrise. This is well represented by the model in
Figure 8. For the sunrise flight in 2000, the mea-
surements in Figure 3 might suggest a slight delay
in the buildup of ClO past the terminator. Wetzel
et al. [2012] presented a case where the onset of
ClO at sunrise was significantly delayed, which
was attributed to polar stratospheric clouds (PSCs)
influencing the levels of UV radiation available for
dimer photolysis. The buildup of ClO for the 2000
flight seems to occur more slowly than in Wetzel
et al. [2012], and the slow increase is well rep-
resented by the model calculations, which do
not take scattering or absorption due to PSCs
into account in the radiative transfer. The over-
all good agreement between the measurements
and the model calculations at sunrise suggests
that PSCs were unlikely to have had a major influ-
ence on the radiative transfer and the onset of
ClO-dimer photolysis.

As the behavior of ClO at sunrise might be influ-
enced by air parcel history due to the buildup of
Cl2 in darkness [Wilmouth et al., 2006], back trajec-
tories from measurements of both the 2000 and
the 1996 flights were calculated using a kinematic
back trajectory model [Schoeberl and Sparling,
1995] with National Centers for Environmental Pre-
diction (NCEP)/National Center for Atmospheric
Research reanalysis winds [Randel, 1987]. Both the
sunlight history for several days along the trajec-
tories as well as the temperature history along
the trajectories in comparison to the formation
temperature of nitric acid trihydrate (TNAT) were
studied. Figure 9 shows examples for the high-Sun
measurements of both flights. TNAT was calculated
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Figure 9. (top) Temperature and (bottom) SZA along back trajectories started at pressure levels corresponding to alti-
tudes of 18 km (black, dotted), 20 km (black, dashed), and 22 km (black, solid) for the high-Sun measurements of (left)
the January 2000 flight and (right) the March 1996 flight. The gray lines in Figure 9 (top) show the formation temper-
atures of nitric acid trihydrate for the pressure levels corresponding to 18 km (dotted), 20 km (dashed), and 22 km
(solid) altitude.

using the formulation by Hanson and Mauersberger [1988] with input VMRs of 8 ppb HNO3 and 5 ppm
H2O. These values are realistic for the January 2000 [Kleinböhl et al., 2002] and for the early-March 1996
[Santee et al., 1996] Arctic lower stratosphere. For the January 2000 flight, the trajectories indicate that for
lower stratospheric altitudes between 18 and 22 km, the air masses had experienced SZAs below 85◦ and
temperatures above TNAT between 1.5 and 2 days before the measurement and at 18 km also between 2.5
and 3 days before the measurement. For altitudes around 22 km, the temperature only dropped below TNAT

for a few hours within the day before the measurement, suggesting that little chlorine activation could have
taken place that could lead to the buildup of Cl2. Air masses at altitudes around 20 km and below experi-
enced temperatures below TNAT for several hours and SZAs only at or above 96◦ during the day before the
measurement. According to Wilmouth et al. [2006], this can lead to the buildup of Cl2 to a level that can
influence the chlorine budget. We note that the potential presence of Cl2 does not influence the results pre-
sented in section 3.1 because the high-Sun ClO profile of the January 2000 flight had been experiencing
SZAs below 90◦ for about 2 h prior to the measurement, which suggests that any Cl2 that might have been
present should have mostly photolyzed by the time of measurement [Wilmouth et al., 2006]. For the March
1996 flight, the trajectories show that the air masses at lower stratospheric altitudes had all been exposed
to sunlight below 89◦ SZA within the day before the measurement. Temperatures tended to be above TNAT

at altitudes of 20 km and higher; only around 18 km the air mass experienced temperatures below TNAT for
a few hours. This trajectory analysis indicates that conditions were not conducive to the buildup of Cl2 in
amounts sufficient to significantly influence the chlorine budget for air parcels sampled by ASUR.

The sensitivity of the diurnal variation of ClO at 20 km to various measurements of the ClO-dimer cross
section is presented in Figure 10. The results shown in the figure cover the range from fast photolysis fre-
quencies [e.g., Papanastasiou et al., 2009] to comparatively slow photolysis frequencies [von Hobe et al.,
2009]. The simulations have been constrained to match observed ClO during high-Sun conditions by allow-
ing ClOx to vary; different values of ClOx are associated with various estimates of the Cl2O2 cross section.
The part of the diurnal behavior of ClO that is most sensitive to the photolysis frequency is the curvature
of the rate of change in ClO mixing ratio for values of SZA between 80◦ and 90◦. The simulations were per-
formed without considering a potential contribution of Cl2 photolysis to the ClO production, which could
influence the rate of ClO increase at sunrise. We note that the results in Figure 10 are mixing ratios after con-
volution with the ASUR averaging kernels. They consider ClO contributions from above 20 km, which should
be largely unaffected by Cl2 buildup, as well as from below 20 km, which might have been affected, such
that the overall effect of Cl2 buildup should be less severe than if the VMR at an individual altitude level were
considered. Assuming that the influence of Cl2 photolysis on the results in Figure 10 is small, photolysis fre-
quencies based on cross sections from Papanastasiou et al. [2009] and Sander et al. [2003] reproduce this
curvature reasonably well in the January 2000 sunrise flight. Cross sections leading to slower rates tend to
result in a flatter curvature in this SZA range, which would corroborate the results presented in section 3.1.

KLEINBÖHL ET AL. ©2014. American Geophysical Union. All Rights Reserved. 6929



Journal of Geophysical Research: Atmospheres 10.1002/2013JD021433

Figure 10. Modeled ClO mixing ratios for the three flights at
20 km altitude, convolved with the ASUR averaging kernels.
Calculations were done for different photolysis cross sections
by Papanastasiou et al. [2009] (blue), Sander et al. [2003]
(green), and von Hobe et al. [2009] (brown). All calculations
use the equilibrium constant by Sander et al. [2009]. The
black lines show the ClO measured by ASUR, with the solid
error bars giving the precision and the dotted error bars
giving the accuracy.

The observations in March 1996 do not reach to
low enough SZAs to allow the plausibility of vari-
ous absorption cross sections to be assessed. We
investigated the influence of the wind speed on
the change of ClO across the terminator based on
air parcel trajectories. For sunrise conditions, this
influence is small (<5% between 85◦ and 90◦ SZA).
For the sunset flight in February 1997, the calcula-
tions with different photolysis cross sections lead
to very similar ClO VMRs. For all flights, the mea-
sured ClO tends to be lower than the calculated
ClO at high SZAs, which will be discussed in the
following sections.

3.3. Study of the Equilibrium Constant
During nighttime, the loss of ClO-dimer in the
polar lower stratosphere occurs exclusively by
thermal decomposition. The kinetics of the par-
titioning of ClO and ClO-dimer during nighttime
have been addressed in a number of studies
[e.g., Avallone and Toohey, 2001; Cox and Hayman,
1988; Nickolaisen et al., 1994; Plenge et al., 2005;
Stimpfle et al., 2004; von Hobe et al., 2005] and
were summarized by von Hobe et al. [2007] and
SPARC [2009].

Values of Keq from Avallone and Toohey [2001], von
Hobe et al. [2005], and JPL recommendations were
used and compared with observations to test our
understanding of nighttime ClOx photochemistry.
The rate constants are summarized in Table 3. The
results are presented in Figure 11 for the 20 km
altitude level. Photolysis frequencies based on
cross sections recommended by Sander et al.
[2003] were used for these calculations. The sen-
sitivity of ClO to various values of Keq is most
apparent when the ClO mixing ratio levels off at
higher SZAs. All equilibrium constants used in
these simulations tend to overestimate the mea-
sured nighttime abundance of ClO. Among differ-
ent parameterizations, the JPL recommendation of

2000 [DeMore et al., 2000] yields very low ClO values at high solar zenith angles, comparable to those from
the recommendation of 2006 [Sander et al., 2006] and slightly lower than those from the recommendation

Table 3. Parameters Used to Calculate the Different Equilibrium
Constants According to the Equation Keq = A ⋅ eB∕T With T Being the
Temperature

Data Set No. A
(

cm3

molecule

)
B (K) Reference

1 1.27 ⋅ 10−27 8744 DeMore et al. [2000]
2 9.3 ⋅ 10−28 8835 Sander et al. [2006]
3 1.72 ⋅ 10−27 8649 Sander et al. [2009]
4a 1.99 ⋅ 10−30 8854 Avallone and Toohey [2001]
5 3.61 ⋅ 10−27 8167 von Hobe et al. [2005]

aFor the parameters by Avallone and Toohey [2001], the
equation is Keq = A ⋅ T ⋅ eB∕T .

of 2009 [Sander et al., 2009] (not shown).
Slightly higher nighttime ClO mixing
ratios result from the equilibrium con-
stant suggested by Avallone and Toohey
[2001], while von Hobe et al. [2005] give
by far the highest calculated ClO.

As calculated ClO depends on both the
temperature and the amount of avail-
able ClOx , which in turn depends on the
ClO-dimer cross section, we perform
sensitivity studies to evaluate these influ-
ences. We assume an error in ClOx based
on the accuracy of the ASUR ClO at high
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Figure 11. Modeled ClO mixing ratios for the three flights at
20 km altitude, convolved with the ASUR averaging kernels.
Calculations were done for different equilibrium constants by
DeMore et al. [2000] (blue), Avallone and Toohey [2001] (red),
and von Hobe et al. [2005] (brown). All calculations use photol-
ysis frequencies from Sander et al. [2003]. The black lines show
the ClO measured by ASUR, with the solid error bars giving the
precision and the dotted error bars giving the accuracy.

Sun and a 2 K error in temperature. Figure S2
in the supporting information compares tem-
perature profiles measured by the ER-2 and
ozone sondes close to the locations of the
ASUR measurements to the NCEP meteorologi-
cal analyses used in the retrieval and modeling,
and shows that this is a reasonable confidence
interval for temperature. Tests to investigate
the influence of the shape of the input ClOx

profile suggest that the influence of the pro-
file shape is smaller than the influence of the
choice of the photolysis cross sections used
to estimate ClOx . Figure 12 summarizes these
sensitivity studies. We focus on the sunrise
measurements obtained at SZA≥ 96◦ because
the influence of photolysis is small for these
conditions. Values of ClO calculated with dif-
ferent JPL recommendations for Keq are within
the accuracies of the ASUR ClO measurements
for all input ClOx profiles. ClO calculated using
Keq from Avallone and Toohey [2001] is within
the accuracies of the measurements in March
1996. For the January 2000 measurement, the
Avallone and Toohey [2001] calculation results
in ClO that is slightly higher than observed
ClO. However, considering the uncertainties in
input ClOx and temperature, there is still rea-
sonable agreement. For ClO calculated with
Keq from von Hobe et al. [2005], agreement is
only achieved for the March 1996 measure-
ment at the highest SZA using the ClO-dimer
cross sections that yield lowest values of ClOx .
For the other measurements from March 1996,
error bars for modeled nighttime ClO only over-
lap measured ClO error bars at the low edge
of the considered temperature range, while for
the January 2000 measurement, no overlap is
achieved within the respective uncertainties.
If some Cl2 buildup had occurred in the con-

ditions of January 2000, some of the ClO observed in the high-Sun measurement could have originated
from the photolysis of Cl2, leading to an overestimate of ClOx and hence ClO in darkness. The fact that the
differences between measured and calculated ClO in darkness are slightly larger in the 2000 flight than
in the 1996 flight might point to an influence of this effect. However, the behavior observed in January
2000 is still similar to the March 1996 measurements, making the value of Keq by von Hobe et al. [2005] less
plausible than the other equilibrium constants, in agreement with previous studies [von Hobe et al., 2007;
Santee et al., 2010].

3.4. Study of the Influence of the ClO + BrO Reaction
In addition to reactions related to ClO-dimer, the behavior of ClO in twilight conditions is influenced by the
reaction between ClO and BrO, given in equations (9)–(11). Sensitivity studies show that during sunrise,
uncertainties in the ClO + BrO product yields modify ClO only in a narrow range of SZAs around 92◦. During
sunset, in contrast, ClO mixing ratios are significantly altered starting around 91◦ SZA and lasting well into
night (i.e., beyond 100◦ SZA).

We investigate the influence of ClO + BrO reaction product yields using the sunset flight from 25 February
1997. ClO VMRs measured by ASUR tended to be lower than calculated by the MISU-1D model beyond ∼ 91◦
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Figure 12. Comparison of nighttime ClO calculated from ClOx derived from ClO at high Sun (colored symbols) with ClO
measured by ASUR at SZA≥ 96◦ (vertical solid black lines with dotted lines giving the accuracy) for 20 km altitude. ClO
was calculated using different equilibrium constants according to the data set number (1: JPL00 [DeMore et al., 2000], 2:
JPL06 [Sander et al., 2006], 3: JPL09 [Sander et al., 2009], 4: Avallone and Toohey [2001], and 5: von Hobe et al. [2005]) using
input ClOx profiles based on cross sections by Papanastasiou et al. [2009] (diamonds), Sander et al. [2003] (triangles), and
von Hobe et al. [2009] (squares), and convolved with the ASUR averaging kernels. Solid error bars give the uncertainty
based on the accuracy of the ASUR ClO at high Sun, dashed error bars additionally include a temperature error of 2 K.

SZA (Figure 10). We use the calculation based on photolysis cross sections recommended by Sander et al.
[2003] and the equilibrium constant by Sander et al. [2009] as the baseline case (green line in Figure 10).
It yields OClO mixing ratios of about 80 ppt at nighttime. We perturb the rate constants for the ClO + BrO
reaction by the uncertainties given in Sander et al. [2009]. The uncertainty of reactions (9)–(11) is estimated
to be a factor of 1.2 at 298 K. The uncertainty in the overall rate of reactions (9)–(11) rises to 1.44 at 190 K,
a typical temperature around 20 km altitude along the flight path. Calculations were performed in which
the reaction rate for each individual branch of the ClO + BrO reaction was varied by a factor 1.44. The rate of
formation of ClOO (reaction (10)) has an insignificant impact on calculated ClO because of the rapid thermal
decomposition of ClOO. Hence, Figure 13 shows model results only for variations in the rate of formation of
OClO (reaction (9)) and BrCl (reaction (11)).

Increasing the rate of formation of OClO by the JPL uncertainty leads to a decrease in calculated ClO by
about 7% for SZAs between 95◦ and 100◦. This model result is found because the other product of reaction
(9) is Br. As the rate of this channel rises, higher abundances of BrO persist into twilight. Higher BrO in twi-
light forces a greater fraction of ClO to be sequestered as OClO, which is thermally stable, rather than Cl2O2,
which reaches a thermal equilibrium. In contrast, a decrease in the rate of reaction (11) by the JPL uncer-
tainty leads to a decline in ClO during twilight, because the sequestration of BrO into its nighttime reservoir
BrCl is suppressed. This again allows for a larger fraction of daytime ClO to be sequestered at night into the
thermally stable OClO, and leads to higher BrO amounts persisting into twilight. The ClO deviation due to
reaction (11) sets in slightly later than the change due to (9) but reaches a higher magnitude at larger SZAs.

Figure 13 also shows a model simulation in which the rate of reaction (9) has been perturbed upward and
the rate of reaction (11) has been perturbed downward by their respective uncertainties. The calculation
yields a ClO mixing ratio that is 11% lower at 95◦ SZA, and 24% lower at 100◦ SZA compared to the standard
case. While the ASUR measurements within their precisions still show ClO VMRs lower than the calcula-
tions, the perturbation of both branches brings the calculated ClO significantly closer to the measurements,
suggesting that the ClO + BrO reaction may bind more ClO as OClO at sunset than is currently assumed.

Also included in Figure 13 is a sensitivity study where a perturbation of ±2 K is applied to the temperature
profile assumed in the model run. Figure S2 in the supporting information demonstrates that this estimate
for the uncertainty in temperature is realistic. The discrepancy between measured and modeled ClO is
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Figure 13. (top) Modeled ClO mixing ratios for the sunset flight
on 25 February 1997 at 20 km altitude, convolved with the ASUR
averaging kernels. Calculations were done with photolysis cross
sections in Sander et al. [2003] and ClO-dimer equilibrium and
ClO + BrO rate constants in Sander et al. [2009] (green). The
ClO + BrO rate constant was varied by its uncertainty down-
ward in the branch forming OClO (light blue), upward in the
branch forming OClO (yellow), downward in the branch forming
BrCl (blue), and upward in the branch forming BrCl (red). Also
shown is an upward perturbation in the OClO branch combined
with a downward perturbation in the BrCl branch (brown). The
black line shows the ClO measured by ASUR, with the solid
error bars giving the precision and the dotted error bars giv-
ing the accuracy. (bottom) Percentage difference in ClO VMR
between the standard case and the different perturbations to
the ClO + BrO reaction. The color coding is identical to the top
plot. The green lines show the effect on ClO of a ±2 K T uncer-
tainty (dotted and dashed lines) and the effect on ClO of wind
moving an air parcel along a predominantly west to east trajec-
tory, which is simulated by assuming a 20 h day in the model
(dash-dotted line).

considerably larger than the uncertainty
attributed to a ±2 K error in temperature.
Nonetheless, the sensitivity to temperature is
important as it is comparable in magnitude to
some of the suggested perturbations to the
governing rate constants. Air parcel trajectory
simulations conducted for the February 1997
flight suggest that the wind was essentially in
the west to east direction, compressing the
length of the day by about 15% compared to a
stationary observer. This effect was simulated
by assuming a 20 h day in the model instead
of a 24 h day. The result is shown by the green
dash-dotted line in Figure 13. The calculated
abundance of ClO is ∼10% higher after sun-
set compared to the stationary simulation. This
moves the model result further away from the
measured ClO values, underlining the relevance
of the discrepancy between the measurement
and the model result.

A concern with the current analysis could be
the introduction of nitrogen oxides (NOx) at
the sunset transition, which could influence the
decrease of ClO. Pierce et al. [1997] reported
observations by the Halogen Occultation
Experiment that show NOx levels around 1 ppb
in the Arctic vortex in late-March 1997. The
trend of about 1 ppb/month they derived dur-
ing this season suggests that NOx levels should
still have been very low during the time of the
ASUR measurement. If low levels of NOx were
present, NO2 would quickly react with ClO,
forming ClNO3, the diurnal variation of which is
very small in the lower stratosphere. The main
source of NOx is the photolysis of HNO3, which
is very slow, such that any NOx would be intro-
duced slowly and is hence unlikely to influence
the decrease of ClO. Short-lived reservoirs of
NOx , e.g., HNO4, have the potential to influence
the decrease of ClO as they photolyze more
rapidly. We considered HNO4 measured by
MkIV in March 2000, which is the closest mea-

surement available in terms of region and season. Levels of HNO4 were found to be in the order of 30 ppt in
the lower stratosphere, suggesting that it did not have a significant influence as a source of NOx .

Our suggestion that the yield of BrCl from ClO + BrO lies at the lower limit of the kinetics uncertainty is
at odds with findings of Canty et al. [2005] and Butz et al. [2007]. Canty et al. [2005] showed an analysis of
nighttime OClO that could only be reconciled with a simulation that placed the BrCl yield at its upper limit,
whereas Butz et al. [2007] showed twilight observations of OClO that are simulated well by a model using the
recommended baseline yield for BrCl. In situ measurements have shown significant amounts of BrO in the
activated vortex at twilight [Avallone and Toohey, 2001] but no BrO in darkness [Toohey et al., 1990]. Avallone
and Toohey [2001] suggested the weakly bound adduct BrOOCl as a temporary reservoir of BrO, which has
been studied theoretically but not in the laboratory. The dissociation of BrOOCl could lead to an increased
availability of BrO in twilight, which in turn would allow a larger fraction of ClO to be sequestered as OClO,
hence lowering ClO in twilight. The details of this process, and whether it would allow a reconciliation of
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the above findings, would be determined by the thermal and photolytical stability of BrOOCl. This points
to a need for more work in this area, in particular laboratory measurements of BrOOCl and simultaneous
measurements of ClO, BrO, and OClO in the atmosphere during the day to night transition.

4. Conclusions

Significant differences exist between various laboratory measurements of the absorption cross sections of
ClO-dimer, and the rate constant controlling the thermal equilibrium between ClO-dimer and ClO. Uncer-
tainties in the ClO-dimer cross section have a strong effect on the calculations of stratospheric ozone loss
in the winter polar regions [e.g., von Hobe et al., 2007; Kawa et al., 2009; SPARC, 2009]. We constrain the
plausibility of these parameters by measuring ClO across the terminator in the activated Arctic polar vortex.

ClO-dimer absorption cross sections leading to fast photolysis frequencies such as Burkholder et al. [1990]
or Papanastasiou et al. [2009] give ClOx mixing ratios that overlap with our estimated range of available Cly .
ClOx values based on the recent cross-section measurements by Young et al. [2014] are higher than the ones
calculated based on Papanastasiou et al. [2009] but are still within the Cly range for some of the conditions
considered. Photolysis frequencies based on cross sections by von Hobe et al. [2009] and Huder and DeMore
[1995] lead to ClOx values that are higher than the available Cly . ClOx values calculated with cross sections
by Pope et al. [2007] have to be considered unrealistically large given our present understanding of chlorine
chemistry, as suggested by previous studies [e.g., Chen et al., 2009; Papanastasiou et al., 2009; Kremser et al.,
2011; Suminska-Ebersoldt et al., 2012].

Scaling the ClO-dimer absorption cross sections considered here to the absolute measurements at 248 nm
reported by Lien et al. [2009] leads to faster photolysis of Cl2O2 and a reduction in the amount of ClOx . Using
the absolute cross section measured by Lien et al. [2009] at 248 nm to scale the cross-section spectra reduces
the ClOx values calculated with the JPL 2002 recommendation such that they overlap with the available Cly .
Recent work by Suminska-Ebersoldt et al. [2012] suggests photolysis frequencies between the ones result-
ing from cross sections by Papanastasiou et al. [2009] and von Hobe et al. [2009] scaled to Lien09. Our results
show that the fast photolysis frequencies in the range suggested by Suminska-Ebersoldt et al. [2012] are
plausible; however, cross sections by von Hobe et al. [2009], Huder and DeMore [1995], and Pope et al. [2007]
still produce ClOx values that are higher than the available Cly , even when these cross sections are scaled
to Lien09. The latest version of the kinetics evaluation by the Jet Propulsion Laboratory [Sander et al., 2011]
now recommends the cross sections by Papanastasiou et al. [2009] for use in kinetic studies. Our results
support this recommendation.

Calculations with equilibrium constants published in the JPL kinetics evaluation of the last few years all give
good agreement with observed nighttime mixing ratios of ClO. The equilibrium constant estimated by von
Hobe et al. [2005] yields nighttime ClO values that are higher than observed. This is in agreement with the
analysis of nighttime ClO at cold temperatures reported by Berthet et al. [2005], which also concluded that
the introduction of Keq given by von Hobe et al. [2005] at temperatures below ∼200 K leads to an overesti-
mation of ClO in their model. Results based on nighttime ClO data from the Microwave Limb Sounder on
EOS-Aura [Santee et al., 2010] suggest an equilibrium constant in agreement with Avallone and Toohey [2001]
and close to the ones recommended in the JPL kinetics evaluations of the recent years [Sander et al., 2006,
2009]. Our analysis largely supports this conclusion.

To study the influence of the reaction of ClO + BrO on the ClO VMR at sunset, we performed calculations that
varied the rates of each branch of this reaction by the uncertainty given in Sander et al. [2009]. We find that
the agreement with measurements is improved by increasing the rate of the branch-forming OClO and by
decreasing the rate of the branch-forming BrCl, suggesting that the ClO + BrO reaction may bind more ClO
as OClO at sunset than currently assumed.
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