50 research outputs found

    Change in energy expenditure and brain and adrenal content of catecholamines in rats during muscular loading and hypokinesia

    Get PDF
    In male 1-7 month old rats, the growth and the protein content of skeletal muscles were higher than in female rats while the O2 consumption and the heart rate were lower. This is combined with reduction of the thyroid gland weight and of catecholamine content in adrenals at the age of 7 months. The development of male and female rats (1-7 month) under conditions of systematic muscular loads increases the growth tempo and protein of skeletal muscles and intensifies the degree of reduction of energy expenditure and the heart rate. This is accomplished by the greater reduction of relative weight of the thyroid gland and, at the age of 7 months, by reduction of the noradrenaline content in the brainstem. Hypodynamic conditions have the exact opposite effect

    Endothelin-1 as a neuropeptide: neurotransmitter or neurovascular effects?

    Get PDF
    Endothelin-1 (ET-1) is an endothelium-derived peptide that also possesses potent mitogenic activity. There is also a suggestion the ET-1 is a neuropeptide, based mainly on its histological identification in both the central and peripheral nervous system in a number of species, including man. A neuropeptide role for ET-1 is supported by studies showing a variety of effects caused following its administration into different regions of the brain and by application to peripheral nerves. In addition there are studies proposing that ET-1 is implicated in a number of neural circuits where its transmitter affects range from a role in pain and temperature control to its action on the hypothalamo-neurosecretory system. While the effect of ET-1 on nerve tissue is beyond doubt, its action on nerve blood flow is often ignored. Here, we review data generated in a number of species and using a variety of experimental models. Studies range from those showing the distribution of ET-1 and its receptors in nerve tissue to those describing numerous neurally-mediated effects of ET-1

    Stimuli of Sensory-Motor Nerves Terminate Arterial Contractile Effects of Endothelin-1 by CGRP and Dissociation of ET-1/ETA-Receptor Complexes

    Get PDF
    Endothelin-1 (ET-1), a long-acting paracrine mediator, is implicated in cardiovascular diseases but clinical trials with ET-receptor antagonists were not successful in some areas. We tested whether the quasi-irreversible receptor-binding of ET-1 (i) limits reversing effects of the antagonists and (ii) can be selectively dissociated by an endogenous counterbalancing mechanism.-receptor complexes.-receptors by ET-1 (i) occur at an antagonist-insensitive site of the receptor and (ii) are selectively terminated by endogenously released CGRP. Hence, natural stimuli of sensory-motor nerves that stimulate release of endogenous CGRP can be considered for therapy of diseases involving ET-1

    Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells

    No full text
    Glutamate-operated ion channels (GluR channels) of the L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate subtype are found in both neurons and glial cells of the central nervous system. These channels are assembled from the GluR-A, -B, -C, and -D subunits; channels containing a GluR-B subunit show an outwardly rectifying current-voltage relation and low calcium permeability, whereas channels lacking the GluR-B subunit are characterized by a doubly rectifying current-voltage relation and high calcium permeability. Most cell types in the central nervous system coexpress several subunits, including GluR-B. However, Bergmann glia in rat cerebellum do not express GluR-B subunit genes. In a subset of cultured cerebellar glial cells, likely derived from Bergmann glial cells. GluR channels exhibit doubly rectifying current-voltage relations and high calcium permeability, whereas GluR channels of cerebellar neurons have low calcium permeability. Thus, differential expression of the GluR-B subunit gene in neurons and glia is one mechanism by which functional properties of native GluR channels are regulated
    corecore