625 research outputs found
Thermal and mechanical properties of advanced impregnation materials for HTS cables and coils
In the growing field of high-temperature superconducting (HTS) applications, finding an appropriate impregnation material for cables and coils remains a challenging task. In HTS cables and coils, tapes have to be able to withstand mechanical loads during operation. Impregnation is playing a role as mechanical stabilization. However, material properties usually change significantly when going to low temperatures which can decrease performance of superconducting devices. For example, a large mismatch in thermal expansion between a conductor and impregnation material at low temperatures can lead to delamination and to degradation of the critical current. Impregnation materials can insulate tapes thermally which can lead to damage of the superconducting device in case of quench. Thus, thermal conductivity is an important property which is responsible for the temperature distribution in a superconducting cable or in a coil. Due to Lorentz forces acting on structural materials in a superconducting device, the mechanical properties of these materials should be investigated at operating temperatures of this device. Therefore, it is important to identify an advanced impregnation material meeting all specific requirements. In this paper, thermal and mechanical properties of impregnation material candidates with added fillers are presented in a temperature range from 300 K to 4 K
Recommended from our members
Toward Uniform Trapped Field Magnets Using a Stack of Roebel Cable Offcuts
Stacks of high temperature superconducting tape can be magnetized to produce a variety of different trapped field profiles in addition to the most common conical or pyramidal profiles. Stacks of tape using discarded Roebel cable offcuts were created to investigate various stacking arrangements with the aim of creating a stack that can be magnetized to produce a uniform trapped field for potential applications such as NMR. A new angled stacking arrangement proved to produce the flattest, most uniform field of all the overlapping stacking arrangements and has the potential to be scaled up. FEM modeling in COMSOL was also performed to complement the measurements and explain the limitations and advantages of the stacking arrangements tested.This work was supported in part by the Engineering and Physical Sciences Research Council, U.K., and in part by SKF S2M, France.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/TASC.2016.251899
Rationale and study design of the Prospective comparison of Angiotensin Receptor neprilysin inhibitor with Angiotensin receptor blocker MEasuring arterial sTiffness in the eldERly (PARAMETER) study.
Hypertension in elderly people is characterised by elevated systolic blood pressure (SBP) and increased pulse pressure (PP), which indicate large artery ageing and stiffness. LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor (ARNI), is being developed to treat hypertension and heart failure. The Prospective comparison of Angiotensin Receptor neprilysin inhibitor with Angiotensin receptor blocker MEasuring arterial sTiffness in the eldERly (PARAMETER) study will assess the efficacy of LCZ696 versus olmesartan on aortic stiffness and central aortic haemodynamics
When Blood Pressure Increases with Standing: Consensus Definition for Diagnosing Orthostatic Hypertension
When changing from the supine to the standing position approximately 500–1000 ml blood is pooled below the diaphragm and hydrostatic pressure forces fluids from the intravascular to the interstitial compartment. These changes impose a major hemodynamic burden on the cardiovascular system. Baroreflex-mediated withdrawal of cardiac parasympathetic activity and sympathetic activation maintain standing blood pressure in healthy persons. Orthostatic hypotension occurs when these counterregulatory mechanisms fail. Conversely, some patients have a paradoxical increase in upright blood pressure to hypertensive levels, presumably due to sympathetic activation overshoot. This orthostatic hypertension is not a benign condition because it is associated with increased cardiovascular morbidity and mortality independently of traditional risk factors.Citation1,Citation2 Yet, there has not been a uniform definition of orthostatic hypertension and the entity is not covered in current hypertension guidelines. Because diagnostic criteria vary profoundly between studies, data on epidemiology, associated health risks, and management of orthostatic hypertension in the existing literature is difficult to interpret
Drawing induced texture and the evolution of superconductive properties with heat treatment time in powder-in-tube in-situ processed MgB2 strands
Monocore powder-in-tube MgB2 strands were cold-drawn and heat-treated at 600C
and 700C for times of up to 71 hours and structure-property relationships
examined. Drawing-induced elongation of the Mg particles led, after HT, to a
textured macrostructure consisting of elongated polycrystalline MgB2 fibers
separated by elongated pores. The superconducting Tc, Jc and Fp were correlated
with the macrostructure and grain size. Grain size increased with HT time at
both 600C and 700C. Jc and hence Fp decreased monotonically but not linearly
with grain size. Overall, it was observed that at 700C, the MgB2 reaction was
more or less complete after as little as 30 min; at 600C, full reaction
completion did not occur until 71 h. into the HT. Transport, Jct(B) was
measured in a perpendicular applied field, and the magnetic critical current
densities, Jcm\bot(B) and Jcm{\phi}(B), were measured in perpendicular and
parallel (axial) applied fields, respectively. Particularly noticeable was the
premature dropoff of Jcm\bot(B) at fields well below the irreversibility field
of Jct(B). This effect is attributed to the fibrous macrostructure and its
accompanying anisotropic connectivity. Magnetic measurements with the field
directed along the strand axis yielded a critical density, Jcm\bot(B), for
current flowing transversely to the strand axis that was less than and dropped
off more rapidly than Jct(B). In the conventional magnetic measurement, the
loop currents that support the magnetization are restricted by the lower of
Jct(B) and Jcm{\phi} (B). In the present case the latter, leading to the
premature dropoff of the measured Jcm(B) compared to Jct(B) with increasing
field. This result is supported by Kramer plots of the Jcm{\phi} (B) and Jct(B)
data which lead to an irreversibility field for transverse current that is very
much less than the usual transport-measured longitudinal one, Birr,t.Comment: 41 pages, 14 figure
Occupational and leisure time physical activity in contrasting relation to ambulatory blood pressure
Background: While moderate and vigorous leisure time physical activities are well documented to decrease the risk for cardiovascular disease, several studies have demonstrated an increased risk for cardiovascular disease in workers with high occupational activity. Research on the underlying causes to the contrasting effects of occupational and leisure time physical activity on cardiovascular health is lacking. The aim of this study was to examine the relation of objective and self-report measures of occupational and leisure time physical activity with 24-h ambulatory systolic blood pressure (BP).
Methods: Results for self-reported physical activity are based on observations in 182 workers (60% male, mean age 51 years), while valid objective physical activity data were available in 151 participants. The usual level of physical activity was assessed by 5 items from the Job Content Questionnaire (high physical effort, lifting heavy loads, rapid physical activity, awkward body positions and awkward positions of head or arms at work) and one item asking about the general level of physical activity during non-working time. On a regular working day, participants wore an ambulatory BP monitor and an accelerometer physical activity monitor during 24 h. Associations were examined by means of Analysis of Covariance.
Results: Workers with an overall high level of self-reported occupational physical activity as well as those who reported to often lift heavy loads at work had a higher mean systolic BP at work, at home and during sleep. However, no associations were observed between objectively measured occupational physical activity and BP. In contrast, those with objectively measured high proportion of moderate and vigorous leisure time physical activity had a significantly lower mean systolic BP during daytime, while no differences were observed according to self-reported level of leisure time physical activity.
Conclusions: These findings suggest that workers reporting static occupational physical activities, unlike general physically demanding tasks characterized by dynamic movements of large muscle groups, are related to a higher daily systolic BP, while high objective levels of moderate and vigorous leisure time physical activity are related to lower daytime systolic BP. Ambulatory systolic BP may be a physiological explanatory factor for the contrasting effects of occupational and leisure time physical activity
- …