Stacks of high temperature superconducting tape can be magnetized to produce a variety of different trapped field profiles in addition to the most common conical or pyramidal profiles. Stacks of tape using discarded Roebel cable offcuts were created to investigate various stacking arrangements with the aim of creating a stack that can be magnetized to produce a uniform trapped field for potential applications such as NMR. A new angled stacking arrangement proved to produce the flattest, most uniform field of all the overlapping stacking arrangements and has the potential to be scaled up. FEM modeling in COMSOL was also performed to complement the measurements and explain the limitations and advantages of the stacking arrangements tested.This work was supported in part by the Engineering and Physical Sciences Research Council, U.K., and in part by SKF S2M, France.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/TASC.2016.251899