241 research outputs found

    Epidemiological, molecular characterization and antibiotic resistance of Salmonella enterica serovars isolated from chicken farms in Egypt

    Get PDF
    Background Salmonella is one of major causes of foodborne outbreaks globally. This study was conducted to estimate the prevalence, typing and antibiotic susceptibilities of Salmonella enterica serovars isolated from 41 broiler chicken farms located in Kafr El-Sheikh Province in Northern Egypt during 2014–2015. The clinical signs and mortalities were observed. Results In total 615 clinical samples were collected from broiler flocks from different organs (liver, intestinal content and gall bladder). Salmonella infection was identified in 17 (41%) broiler chicken flocks and 67 Salmonella isolates were collected. Recovered isolates were serotyped as 58 (86.6%) S. enterica serovar Typhimurium, 6 (9%) S. enterica serovar Enteritidis and 3 (4.5%) were non- typable. The significant high mortality rate was observed only in 1-week-old chicks. sopE gene was detected in 92.5% of the isolates which indicating their ability to infect humans. All S. enterica serovar Enteritidis isolates were susceptible to all tested antimicrobials. The phenotypically resistant S. enterica serovar Typhimurium isolates against ampicillin, tetracycline, sulphamethoxazole and chloramphenicol were harbouring BlaTEM, (tetA and tetC), (sul1 and sul3) and (cat1 and floR), respectively. The sensitivity rate of S. enterica serovar Typhimurium to gentamycin, trimethoprim/sulphamethoxazole and streptomycin were 100, 94.8, 89.7%, respectively. The silent streptomycin antimicrobial cassettes were detected in all Salmonella serovars. A class one integron (dfrA12, orfF and aadA2) was identified in three of S. enterica serovar Typhimurium strains. Conclusions To the best of our knowledge, this study considered first report discussing the prevalence, genotyping, antibiotic susceptibility and public health significance of S. enterica serovars in broilers farms of different ages in Delta Egypt. Further studies are mandatory to verify the location of some resistance genes that are within or associated with the class one integron

    Induction of Foxp3-Expressing Regulatory T-Cells by Donor Blood Transfusion Is Required for Tolerance to Rat Liver Allografts

    Get PDF
    BACKGROUND:Donor-specific blood transfusion (DST) prior to solid organ transplantation has been shown to induce long-term allograft survival in the absence of immunosuppressive therapy. Although the mechanisms underlying DST-induced allograft tolerance are not well defined, there is evidence to suggest DST induces one or more populations of antigen-specific regulatory cells that suppress allograft rejection. However, neither the identity nor the regulatory properties of these tolerogenic lymphocytes have been reported. Therefore, the objective of this study was to define the kinetics, phenotype and suppressive function of the regulatory cells induced by DST alone or in combination with liver allograft transplantation (LTx). METHODOLOGY/PRINCIPAL FINDINGS:Tolerance to Dark Agouti (DA; RT1(a)) rat liver allografts was induced by injection (iv) of 1 ml of heparinized DA blood to naïve Lewis (LEW; RT1(l)) rats once per week for 4 weeks prior to LTx. We found that preoperative DST alone generates CD4(+) T-cells that when transferred into naïve LEW recipients are capable of suppressing DA liver allograft rejection and promoting long-term survival of the graft and recipient. However, these DST-generated T-cells did not express the regulatory T-cell (Treg) transcription factor Foxp3 nor did they suppress alloantigen (DA)-induced activation of LEW T-cells in vitro suggesting that these lymphocytes are not fully functional regulatory Tregs. We did observe that DST+LTx (but not DST alone) induced the time-dependent formation of CD4(+)Foxp3(+) Tregs that potently suppressed alloantigen-induced activation of naïve LEW T-cells in vitro and liver allograft rejection in vivo. Finally, we present data demonstrating that virtually all of the Foxp3-expressing Tregs reside within the CD4(+)CD45RC(-) population whereas in which approximately 50% of these Tregs express CD25. CONCLUSIONS/SIGNIFICANCE:We conclude that preoperative DST, in the absence of liver allograft transplantation, induces the formation of CD4(+) T-cells that are not themselves Tregs but give rise directly or indirectly to fully functional CD4(+)CD45RC(-)Foxp3(+)Tregs when transferred into MHC mismatched recipients prior to LTx. These Tregs possess potent suppressive activity and are capable of suppressing acute liver allograft rejection. Understanding the mechanisms by which preoperative DST induces the generation of tolerogenic Tregs in the presence of alloantigens may lead to the development of novel antigen-specific immunological therapies for the treatment of solid organ rejection

    Serial selection for invasiveness increases expression of miR-143/miR-145 in glioblastoma cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastoma multiforme (GBM) is the most common primary central nervous system malignancy and its unique invasiveness renders it difficult to treat. This invasive phenotype, like other cellular processes, may be controlled in part by microRNAs - a class of small non-coding RNAs that act by altering the expression of targeted messenger RNAs. In this report, we demonstrate a straightforward method for creating invasive subpopulations of glioblastoma cells (IM3 cells). To understand the correlation between the expression of miRNAs and the invasion, we fully profiled 1263 miRNAs on six different cell lines and two miRNAs, miR-143 and miR-145, were selected for validation of their biological properties contributing to invasion. Further, we investigated an ensemble effect of both miR-143 and miR-145 in promoting invasion.</p> <p>Methods</p> <p>By repeated serial invasion through Matrigel<sup>®</sup>-coated membranes, we isolated highly invasive subpopulations of glioma cell lines. Phenotypic characterization of these cells included <it>in vitro </it>assays for proliferation, attachment, and invasion. Micro-RNA expression was compared using miRCURY arrays (Exiqon). In situ hybridization allowed visualization of the regional expression of miR-143 and miR-145 in tumor samples, and antisense probes were used investigate <it>in vitro </it>phenotypic changes seen with knockdown in their expression.</p> <p>Results</p> <p>The phenotype we created in these selected cells proved stable over multiple passages, and their microRNA expression profiles were measurably different. We found that two specific microRNAs expressed from the same genetic locus, miR-143 and miR-145, were over-expressed in our invasive subpopulations. Further, we also found that combinatorial treatment of these cells with both antisense-miRNAs (antimiR-143 and -145) will abrogated their invasion without decreasing cell attachment or proliferation.</p> <p>Conclusions</p> <p>To best of our knowledge, these data demonstrate for the first time that miR-143 and miR-145 regulate the invasion of glioblastoma and that miR-143 and -145 could be potential therapeutic target for anti-invasion therapies of glioblastoma patients.</p

    Taking a more nuanced look at behavior change for demand reduction in the illegal wildlife trade

    Get PDF
    The illegal wildlife trade threatens the future of many species, and undermines economies and livelihoods. Conservationists have largely responded with supply‐side interventions, such as antipoaching patrols, but these often fail to stem the tide of wildlife trafficking. There is now increasing interest in demand‐side interventions, which seek to lower poaching pressure on sought‐after species by reducing consumer's desire for, and purchase of, specific wildlife products. Individual behavior change approaches, from environmental education to social marketing, have been widely advocated by academics, practitioners, and policy makers. However, this is an emerging field and we lack the breadth of evidence needed to understand and predict the potential outcomes of demand reduction interventions. To help us gain broader insights, we examine the literature from public health and international development on the effectiveness of behavior change interventions, and critique the current conceptualization of strategies for reducing consumer demand in the illegal wildlife trade. We show that behavior change is difficult to achieve and interventions may have unintended and undesirable consequences because of unaddressed systemic, cultural and environmental drivers, and limited resourcing. We conclude that some sections of the conservation community are advocating a shift from one reductionist approach based on limiting supply, to another based on limiting demand, and argue that conservationists should learn from the public health and international development projects that have integrated systems thinking. By accounting for the multiple interactions and synergies between different factors in the wildlife trade, we can develop more strategic approaches to protecting endangered species

    Get PDF

    Get PDF

    Leptin as a critical regulator of hepatocellular carcinoma development through modulation of human telomerase reverse transcriptase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous epidemiological studies have documented that obesity is associated with hepatocellular carcinoma (HCC). The aim of this study was to investigate the biological actions regulated by leptin, the obesity biomarker molecule, and its receptors in HCC and the correlation between leptin and human telomerase reverse transcriptase (hTERT), a known mediator of cellular immortalization.</p> <p>Methods</p> <p>We investigated the relationship between leptin, leptin receptors and hTERT mRNA expression in HCC and healthy liver tissue samples. In HepG2 cells, chromatin immunoprecipitation assay was used to study signal transducer and activator of transcription-3 (STAT3) and myc/mad/max transcription factors downstream of leptin which could be responsible for hTERT regulation. Flow cytometry was used for evaluation of cell cycle modifications and MMP1, 9 and 13 expression after treatment of HepG2 cells with leptin. Blocking of leptin's expression was achieved using siRNA against leptin and transfection with liposomes.</p> <p>Results</p> <p>We showed, for the first time, that leptin's expression is highly correlated with hTERT expression levels in HCC liver tissues. We also demonstrated in HepG2 cells that leptin-induced up-regulation of hTERT and TA was mediated through binding of STAT3 and Myc/Max/Mad network proteins on <it>hTERT </it>promoter. We also found that leptin could affect hepatocellular carcinoma progression and invasion through its interaction with cytokines and matrix mettaloproteinases (MMPs) in the tumorigenic microenvironment. Furthermore, we showed that histone modification contributes to leptin's gene regulation in HCC.</p> <p>Conclusions</p> <p>We propose that leptin is a key regulator of the malignant properties of hepatocellular carcinoma cells through modulation of hTERT, a critical player of oncogenesis.</p
    corecore