493 research outputs found

    Impact of cardiac hybrid single-photon emission computed tomography/computed tomography imaging on choice of treatment strategy in coronary artery disease

    Get PDF
    Aims Cardiac hybrid imaging by fusing single-photon emission computed tomography (SPECT) myocardial perfusion imaging with coronary computed tomography angiography (CCTA) provides important complementary diagnostic information for coronary artery disease (CAD) assessment. We aimed at assessing the impact of cardiac hybrid imaging on the choice of treatment strategy selection for CAD. Methods and results Three hundred and eighteen consecutive patients underwent a 1 day stress/rest (99m)Tc-tetrofosmin SPECT and a CCTA on a separate scanner for evaluation of CAD. Patients were divided into one of the following three groups according to findings in the hybrid images obtained by fusing SPECT and CCTA: (i) matched finding of stenosis by CCTA and corresponding reversible SPECT defect; (ii) unmatched CCTA and SPECT finding; (iii) normal finding by both CCTA and SPECT. Follow-up was confined to the first 60 days after hybrid imaging as this allows best to assess treatment strategy decisions including the revascularization procedure triggered by its findings. Hybrid images revealed matched, unmatched, and normal findings in 51, 74, and 193 patients. The revascularization rate within 60 days was 41, 11, and 0% for matched, unmatched, and normal findings, respectively (P< 0.001 for all inter-group comparisons). Conclusion Cardiac hybrid imaging with SPECT and CCTA provides an added clinical value for decision making with regard to treatment strategy for CAD

    Structures of smooth muscle myosin and heavy meromyosin in the folded, shutdown state

    Get PDF
    Remodelling of the contractile apparatus within smooth muscle cells is an essential process that allows effective contractile activity over a wide range of cell lengths. The thick filaments may be redistributed via depolymerisation into inactive myosin monomers that have been detected in vitro, in which the long tail has a folded conformation. The structure of this folded molecule has been controversial. Using negative stain electron microscopy of individual folded molecules from turkey gizzard we show they are more compact than previously described, with heads and the three segments of the folded tail closely packed. Smooth muscle heavy meromyosin (HMM), which lacks two-thirds of the tail, closely resembles the equivalent parts of whole myosin. Image processing reveals a characteristic head region morphology for both HMM and myosin whose features are identifiable by comparison with less compact molecules. The two heads associate asymmetrically: the tip of one motor domain touches the base of the other, resembling the blocked and free heads of this HMM when it forms 2-D crystals on lipid. The tail of HMM lies between the heads, contacting the blocked motor domain, unlike in the 2-D crystal. The tail of the intact myosin is bent sharply and consistently at two positions close to residues 1175 and 1535. The first bend position correlates with a skip in the coiled coil sequence, the second does not. The first segment runs between the heads from the head-tail junction. Unexpectedly, the other segments associate only with the blocked head rather than both heads, such that the second bend lies at a specific position near the C-lobe of the blocked head regulatory light chain. Quantitative analysis of tail flexibility shows that the single coiled coil of HMM has an apparent Young’s modulus of about 0.5 GPa. The folded tail of the intact molecule is less flexible indicating interactions between the segments. The folded tail does not modify the compact head arrangement but stabilises it, indicating a structural mechanism for the very low ATPase activity of the folded molecule

    A population-based study of transformed marginal zone lymphoma:identifying outcome-related characteristics

    Get PDF
    Histological transformation of marginal zone lymphoma (tMZL) into diffuse large B-cell lymphoma is associated with poor outcomes. Clinical characteristics associated with transformation risk and outcome after transformation are largely unknown due to scarcity of data. In this population-based study, competing risk analyses were performed to elucidate clinical characteristics associated with developing transformation among 1793 MZL patients using the Netherlands Cancer Registry. Cox regression analyses were performed to elucidate clinical characteristics associated with risk of relapse and mortality after transformation. Transformation occurred in 75 (4%) out of 1793 MZL patients. Elevated LDH and nodal MZL subtype at MZL diagnosis were associated with an increased risk, and radiotherapy with a reduced risk of developing tMZL. Most tMZL patients received R-(mini)CHOP (n = 53, 71%). Age &gt;60 years and (immuno)chemotherapy before transformation were associated with an increased risk of relapse and mortality after transformation. Two-year progression-free survival (PFS) and overall survival (OS) were 66% (95% CI 52-77%) and 75% (95% CI 62-85%) for R-(mini)CHOP-treated tMZL patients, as compared to a PFS and OS both of 41% (95% CI 19-63%) for patients treated otherwise. Our study offers comprehensive insights into characteristics associated with transformation and survival after transformation, thereby optimizing guidelines and patient counseling.</p

    FMAP: Distributed Cooperative Multi-Agent Planning

    Full text link
    This paper proposes FMAP (Forward Multi-Agent Planning), a fully-distributed multi-agent planning method that integrates planning and coordination. Although FMAP is specifically aimed at solving problems that require cooperation among agents, the flexibility of the domain-independent planning model allows FMAP to tackle multi-agent planning tasks of any type. In FMAP, agents jointly explore the plan space by building up refinement plans through a complete and flexible forward-chaining partial-order planner. The search is guided by h D T G , a novel heuristic function that is based on the concepts of Domain Transition Graph and frontier state and is optimized to evaluate plans in distributed environments. Agents in FMAP apply an advanced privacy model that allows them to adequately keep private information while communicating only the data of the refinement plans that is relevant to each of the participating agents. Experimental results show that FMAP is a general-purpose approach that efficiently solves tightly-coupled domains that have specialized agents and cooperative goals as well as loosely-coupled problems. Specifically, the empirical evaluation shows that FMAP outperforms current MAP systems at solving complex planning tasks that are adapted from the International Planning Competition benchmarks.This work has been partly supported by the Spanish MICINN under projects Consolider Ingenio 2010 CSD2007-00022 and TIN2011-27652-C03-01, the Valencian Prometeo project II/2013/019, and the FPI-UPV scholarship granted to the first author by the Universitat Politecnica de Valencia.Torreño Lerma, A.; Onaindia De La Rivaherrera, E.; Sapena Vercher, O. (2014). FMAP: Distributed Cooperative Multi-Agent Planning. Applied Intelligence. 41(2):606-626. https://doi.org/10.1007/s10489-014-0540-2S606626412Benton J, Coles A, Coles A (2012) Temporal planning with preferences and time-dependent continuous costs. In: Proceedings of the 22nd international conference on automated planning and scheduling (ICAPS). AAAI, pp 2–10Borrajo D. (2013) Multi-agent planning by plan reuse. In: Proceedings of the 12th international conference on autonomous agents and multi-agent systems (AAMAS). IFAAMAS, pp 1141–1142Boutilier C, Brafman R (2001) Partial-order planning with concurrent interacting actions. J Artif Intell Res 14(105):136Brafman R, Domshlak C (2008) From one to many: planning for loosely coupled multi-agent systems. In: Proceedings of the 18th international conference on automated planning and scheduling (ICAPS). AAAI, pp 28–35Brenner M, Nebel B (2009) Continual planning and acting in dynamic multiagent environments. J Auton Agents Multiagent Syst 19(3):297–331Bresina J, Dearden R, Meuleau N, Ramakrishnan S, Smith D, Washington R (2002) Planning under continuous time and resource uncertainty: a challenge for AI. In: Proceedings of the 18th conference on uncertainty in artificial intelligence (UAI). Morgan Kaufmann, pp 77–84Cox J, Durfee E (2009) Efficient and distributable methods for solving the multiagent plan coordination problem. Multiagent Grid Syst 5(4):373–408Crosby M, Rovatsos M, Petrick R (2013) Automated agent decomposition for classical planning. In: Proceedings of the 23rd international conference on automated planning and scheduling (ICAPS). AAAI, pp 46–54Dimopoulos Y, Hashmi MA, Moraitis P (2012) μ-satplan: Multi-agent planning as satisfiability. Knowl-Based Syst 29:54–62Fikes R, Nilsson N (1971) STRIPS: a new approach to the application of theorem proving to problem solving. Artif Intell 2(3):189–208Gerevini A, Haslum P, Long D, Saetti A, Dimopoulos Y (2009) Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners. Artif Intell 173(5-6):619–668Ghallab M, Nau D, Traverso P (2004) Automated planning. Theory and practice. Morgan KaufmannGünay A, Yolum P (2013) Constraint satisfaction as a tool for modeling and checking feasibility of multiagent commitments. Appl Intell 39(3):489–509Helmert M (2004) A planning heuristic based on causal graph analysis. In: Proceedings of the 14th international conference on automated planning and scheduling ICAPS. AAAI, pp 161–170Hoffmann J, Nebel B (2001) The FF planning system: fast planning generation through heuristic search. J Artif Intell Res 14:253–302Jannach D, Zanker M (2013) Modeling and solving distributed configuration problems: a CSP-based approach. IEEE Trans Knowl Data Eng 25(3):603–618Jonsson A, Rovatsos M (2011) Scaling up multiagent planning: a best-response approach. In: Proceedings of the 21st international conference on automated planning and scheduling (ICAPS). AAAI, pp 114–121Kala R, Warwick K (2014) Dynamic distributed lanes: motion planning for multiple autonomous vehicles. Appl Intell:1–22Koehler J, Ottiger D (2002) An AI-based approach to destination control in elevators. AI Mag 23(3):59–78Kovacs DL (2011) Complete BNF description of PDDL3.1. Technical reportvan der Krogt R (2009) Quantifying privacy in multiagent planning. Multiagent Grid Syst 5(4):451–469Kvarnström J (2011) Planning for loosely coupled agents using partial order forward-chaining. In: Proceedings of the 21st international conference on automated planning and scheduling (ICAPS). AAAI, pp 138–145Lesser V, Decker K, Wagner T, Carver N, Garvey A, Horling B, Neiman D, Podorozhny R, Prasad M, Raja A et al (2004) Evolution of the GPGP/TAEMS domain-independent coordination framework. Auton Agents Multi-Agent Syst 9(1–2):87–143Long D, Fox M (2003) The 3rd international planning competition: results and analysis. J Artif Intell Res 20:1–59Nissim R, Brafman R, Domshlak C (2010) A general, fully distributed multi-agent planning algorithm. In: Proceedings of the 9th international conference on autonomous agents and multiagent systems (AAMAS). IFAAMAS, pp 1323–1330O’Brien P, Nicol R (1998) FIPA - towards a standard for software agents. BT Tech J 16(3):51–59Öztürk P, Rossland K, Gundersen O (2010) A multiagent framework for coordinated parallel problem solving. Appl Intell 33(2):132–143Pal A, Tiwari R, Shukla A (2013) Communication constraints multi-agent territory exploration task. Appl Intell 38(3):357–383Richter S, Westphal M (2010) The LAMA planner: guiding cost-based anytime planning with landmarks. J Artif Intell Res 39(1):127–177de la Rosa T, García-Olaya A, Borrajo D (2013) A case-based approach to heuristic planning. Appl Intell 39(1):184–201Sapena O, Onaindia E (2008) Planning in highly dynamic environments: an anytime approach for planning under time constraints. Appl Intell 29(1):90–109Sapena O, Onaindia E, Garrido A, Arangú M (2008) A distributed CSP approach for collaborative planning systems. Eng Appl Artif Intell 21(5):698–709Serrano E, Such J, Botía J, García-Fornes A (2013) Strategies for avoiding preference profiling in agent-based e-commerce environments. Appl Intell:1–16Smith D, Frank J, Jónsson A (2000) Bridging the gap between planning and scheduling. Knowl Eng Rev 15(1):47–83Such J, García-Fornes A, Espinosa A, Bellver J (2012) Magentix2: a privacy-enhancing agent platform. Eng Appl Artif Intell:96–109Tonino H, Bos A, de Weerdt M, Witteveen C (2002) Plan coordination by revision in collective agent based systems. Artif Intell 142(2):121–145Torreño A, Onaindia E, Sapena O (2012) An approach to multi-agent planning with incomplete information. In: Proceedings of the 20th European conference on artificial intelligence (ECAI), vol 242. IOS Press, pp 762–767Torreño A, Onaindia E, Sapena O (2014) A flexible coupling approach to multi-agent planning under incomplete information. Knowl Inf Syst 38(1):141–178Van Der Krogt R, De Weerdt M (2005) Plan repair as an extension of planning. In: Proceedings of the 15th international conference on automated planning and scheduling (ICAPS). AAAI, pp 161–170de Weerdt M, Clement B (2009) Introduction to planning in multiagent systems. Multiagent Grid Syst 5(4):345– 355Yokoo M, Durfee E, Ishida T, Kuwabara K (1998) The distributed constraint satisfaction problem: formalization and algorithms. IEEE Trans Knowl Data Eng 10(5):673–685Zhang J, Nguyen X, Kowalczyk R (2007) Graph-based multi-agent replanning algorithm. In: Proceedings of the 6th international joint conference conference on autonomous agents and multiagent systems (AAMAS). IFAAMAS, pp 798–80

    Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial

    Get PDF
    In the Fractional Flow Reserve Versus Angiography for Multivessel Evaluation (FAME) study, fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) improved outcome compared with angiography-guided PCI for up to 2 years of follow-up. The aim in this study was to investigate whether the favourable clinical outcome with the FFR-guided PCI in the FAME study persisted over a 5-year follow-up

    Inter- and Intra-Observer Variability and the Effect of Experience in Cine-MRI for Adhesion Detection

    Get PDF
    Cine-MRI for adhesion detection is a promising novel modality that can help the large group of patients developing pain after abdominal surgery. Few studies into its diagnostic accuracy are available, and none address observer variability. This retrospective study explores the inter- and intra-observer variability, diagnostic accuracy, and the effect of experience. A total of 15 observers with a variety of experience reviewed 61 sagittal cine-MRI slices, placing box annotations with a confidence score at locations suspect for adhesions. Five observers reviewed the slices again one year later. Inter- and intra-observer variability are quantified using Fleiss’ (inter) and Cohen’s (intra) κ and percentage agreement. Diagnostic accuracy is quantified with receiver operating characteristic (ROC) analysis based on a consensus standard. Inter-observer Fleiss’ κ values range from 0.04 to 0.34, showing poor to fair agreement. High general and cine-MRI experience led to significantly (p < 0.001) better agreement among observers. The intra-observer results show Cohen’s κ values between 0.37 and 0.53 for all observers, except one with a low κ of −0.11. Group AUC scores lie between 0.66 and 0.72, with individual observers reaching 0.78. This study confirms that cine-MRI can diagnose adhesions, with respect to a radiologist consensus panel and shows that experience improves reading cine-MRI. Observers without specific experience adapt to this modality quickly after a short online tutorial. Observer agreement is fair at best and area under the receiver operating characteristic curve (AUC) scores leave room for improvement. Consistently interpreting this novel modality needs further research, for instance, by developing reporting guidelines or artificial intelligence-based methods

    Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates

    Get PDF
    BACKGROUND: In the internal fixation of fractured bone by means of bone-plates fastened to the bone on its tensile surface, an on-going concern has been the excessive stress-shielding of the bone by the excessively-stiff stainless-steel plate. The compressive stress-shielding at the fracture-interface immediately after fracture-fixation delays callus formation and bone healing. Likewise, the tensile stress-shielding of the layer of the bone underneath the plate can cause osteoporosis and decrease in tensile strength of this layer. METHOD: In order to address this problem, we propose to use stiffness-graded plates. Accordingly, we have computed (by finite-element analysis) the stress distribution in the fractured bone fixed by composite plates, whose stiffness is graded both longitudinally and transversely. RESULTS: It can be seen that the stiffness-graded composite-plates cause less stress-shielding (as an example: at 50% of the healing stage, stress at the fracture interface is compressive in nature i.e. 0.002 GPa for stainless steel plate whereas stiffness graded plates provides tensile stress of 0.002 GPa. This means that stiffness graded plate is allowing the 50% healed bone to participate in loadings). Stiffness-graded plates are more flexible, and hence permit more bending of the fractured bone. This results in higher compressive stresses induced at the fractured faces accelerate bone-healing. On the other hand, away from the fracture interface the reduced stiffness and elastic modulus of the plate causes the neutral axis of the composite structure to be lowered into the bone resulting in the higher tensile stress in the bone-layer underneath the plate, wherein is conducive to the bone preserving its tensile strength. CONCLUSION: Stiffness graded plates (with in-built variable stiffness) are deemed to offer less stress-shielding to the bone, providing higher compressive stress at the fractured interface (to induce accelerated healing) as well as higher tensile stress in the intact portion of the bone (to prevent bone remodeling and osteoporosis)
    corecore