162,748 research outputs found

    Low Temperature Electronic Transport through Macromolecules and Characteristics of Intramolecular Electron Transfer

    Full text link
    A theory of electronic transport through molecular wires is applied to analyze characteristics of a long-range electron transfer (ET) through molecular bridges in macromolecules with complex donor/acceptor subsystems. Assuming a coherent electron tunneling through the bridge to be the predominant mechanism of ET at low temperatures it is shown that low temperature current-voltage curves can exhibit a step-like structure, which contains information concerning intrinsic features of ET processes such as the effect of donor/acceptor coupling to the bridge and primary pathways of electrons tunneling through the bridge. By contacting the proposed theoretical analysis with such experimental data a variety of valuable characteristics of long-range intramolecular ET can be identified. Analytical and numerical results are presented. Using the Buttiker dephasing model within the scattering matrix formalism we analyze dephasing effects, and we show that these effects could be reduced enough to allow the structure of the electron transmission function to be exposed in the experiments on the electronic transport through macromolecules.Comment: 9 pages, 2 figures, text revise

    Sharing Polarization within Quantum Subspaces

    Full text link
    Given an ensemble of n spins, at least some of which are partially polarized, we investigate the sharing of this polarization within a subspace of k spins. We assume that the sharing results in a pseudopure state, characterized by a single purity parameter which we call the bias. As a concrete example we consider ensembles of spin-1/2 nuclei in liquid-state nuclear magnetic resonance (NMR) systems. The shared bias levels are compared with some current entanglement bounds to determine whether the reduced subspaces can give rise to entangled states.Comment: 7 pages, 3 figure

    Orbiter/payload proximity operations: Lateral approach technique

    Get PDF
    The lateral approach is presented for proximity operations associated with the retrieval of free flying payloads. An out of plane final approach emphasizing onboard software support is recommended for all except the latter segment of the final approach in which manual control is considered mandatory. An overall assessment of various candidate proximity operations techniques are made

    Propagation of the phase of solar modulation

    Get PDF
    The phase of the 11 year galactic cosmic ray variation, due to a varying rate of emission of long lived propagating regions of enhanced scattering, travels faster than the scattering regions themselves. The radial speed of the 11 year phase in the quasi-steady, force field approximation is exactly twice the speed of the individual, episodic decreases. A time dependent, numerical solution for 1 GeV protons at 1 and 30 Au gives a phase speed which is 1.85 times the propagation speed of the individual decreases

    Single-Peakedness and Disconnected Coalitions

    Get PDF
    Ordinally single-peaked preferences are distinguished from cardinally singlepeaked preferences, in which all players have a similar perception of distances in some one-dimensional ordering. While ordinal single-peakedness can lead to disconnected coalitions that have a "hole" in the ordering, cardinal single-peakedness precludes this possibility, based on two models of coalition formation: ¥ Fallback (FB): Players seek coalition partners by descending lower and lower in their preference rankings until a majority coalition forms. ¥ Build-Up (BU): Similar to FB, except that when nonmajority subcoalitions form, they fuse into composite players, whose positions are defined cardinally and who are treated as single players in the convergence process. FB better reflects the unconstrained, or nonmyopic, possibilities of coalition formation, whereas BU-because all subcoalition members must be included in any majority coalition that forms-restricts combinatorial possibilities and tends to produce less compact majority coalitions. The "strange bedfellows" frequently observed in legislative coalitions and military alliances suggest that even when players agree on, say, a left-right ordering, their perceptions of exactly where players stand in this ordering may differ substantially. If so, a player may be acceptable to a coalition but may not find every member in it acceptable, causing that player not to join and possibly creating a disconnected coalition.COALITION FORMATION; SINGLE-PEAKEDNESS; LEGISLATURES; ALLIANCES

    ESO 3060170 -- a massive fossil galaxy group with a heated gas core?

    Full text link
    We present a detailed study of the ESO 3060170 galaxy group combining Chandra, XMM and optical observations. The system is found to be a fossil galaxy group. The group X-ray emission is composed of a central dense cool core (10 kpc in radius) and an isothermal medium beyond the central 10 kpc. The region between 10 and 50 kpc (the cooling radius) has the same temperature as the gas from 50 kpc to 400 kpc although the gas cooling time between 10 and 50 kpc (2 - 6 Gyr) is shorter than the Hubble time. Thus, the ESO 3060170 group does not have a group-sized cooling core. We suggest that the group cooling core may have been heated by a central AGN outburst in the past and the small dense cool core is the truncated relic of a previous cooling core. The Chandra observations also reveal a variety of X-ray features in the central region, including a ``finger'', an edge-like feature and a small ``tail'', all aligned along a north-south axis, as are the galaxy light and group galaxy distribution. The proposed AGN outburst may cause gas ``sloshing'' around the center and produce these asymmetric features. The observed flat temperature profile to 1/3 R_vir is not consistent with the predicted temperature profile in recent numerical simulations. We compare the entropy profile of the ESO 3060170 group with those of three other groups and find a flatter relation than that predicted by simulations involving only shock heating, S \propto r 0.85^{~ 0.85}. This is direct evidence for the importance of non-gravitational processes in group centers. We derive the mass profiles within 1/3 R_vir and find the ESO 3060170 group is the most massive fossil group known (1 - 2 X 1014^{14} M_{\odot}). The M/L ratio of the system, ~ 150 at 0.3 R_vir, is normal.Comment: 17 pages, 12 figures, to appear in ApJ. A high-resolution version can be downloaded from http://cxc.harvard.edu/~msun/esoa.p

    Structural templating as a route to improved photovoltaic performance in copper phthalocyanine/fullerene (C60) heterojunctions

    Get PDF
    We have developed a method to improve the short circuit current density in copper phthalocyanine (CuPc)/fullerene (C60) organic solar cells by ~60% by modifying the CuPc crystal orientation through use of a molecular interlayer to maximize charge transport in the direction between the two electrodes. Powder x-ray diffraction and electronic absorption spectroscopy show that a thin 3,4,9,10-perylenetetracarboxylic dianhydride interlayer before CuPc growth templates the CuPc film structure, forcing the molecules to lie flat with respect to the substrate surface, although the intrastack orientation is unaffected. This modified stacking configuration facilitates charge transport and improves charge collection
    corecore