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Abstract 

Ordinally single-peaked preferences are distinguished from cardinally single-

peaked preferences, in which all players have a similar perception of distances in some 

one-dimensional ordering.  While ordinal single-peakedness can lead to disconnected 

coalitions that have a “hole” in the ordering, cardinal single-peakedness precludes this 

possibility, based on two models of coalition formation: 

• Fallback (FB):  Players seek coalition partners by descending lower and lower in          

  their preference rankings until a majority coalition forms. 

• Build-Up (BU):  Similar to FB, except that when nonmajority subcoalitions form,  

  they fuse into composite players, whose positions are defined cardinally and who  

  are treated as single players in the convergence process. 

FB better reflects the unconstrained, or nonmyopic, possibilities of coalition formation, 

whereas BU—because all subcoalition members must be included in any majority 

coalition that forms—restricts combinatorial possibilities and tends to produce less 

compact majority coalitions. 

The “strange bedfellows” frequently observed in legislative coalitions and military 

alliances suggest that even when players agree on, say, a left-right ordering, their 

perceptions of exactly where players stand in this ordering may differ substantially.  If so, 

a player may be acceptable to a coalition but may not find every member in it acceptable, 

causing that player not to join and possibly creating a disconnected coalition.  

JEL Classification:  C78, D71 

Keywords:  Coalition formation; single-peakedness; legislatures; alliances 
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Single-Peakedness and Disconnected Coalitions1 

1.  Introduction 

That individual coherence, like transitive individual preferences, can lead to social 

incoherence—like voting cycles or the nonexistence of the core (Austen–Smith and 

Banks, 2000)—is well-known in the social-choice literature.  In this paper, we show that 

a similar phenomenon can occur in coalition formation, whereby players with 

“connected” preferences may jell into “disconnected” coalitions.   

This phenomenon is not surprising when strategic considerations come into play.  

For example, two ideologically distant players might join together if that would enable 

them to win, whereas either player’s joining with a smaller more centrally located player 

would not afford this possibility.  More surprising, such strange bedfellows may get 

together for non-strategic reasons, which we will show can occur under two models of 

coalition formation.  

Both models assume that players have ideal positions along a one-dimensional 

policy space, or line.  The ordering of these ideal positions—say, from left to right—is 

assumed to be known by all players.   The goal of the players is to form simple-majority 

coalitions containing ideologically proximate players.  

There is nothing sacrosanct about the coalition’s having a simple majority of 

members; it could be any qualified majority, up to and including unanimity.  Although 

players could be unequally weighted, we assume in our models that they are not to avoid 

                                                 

1Steven J. Brams acknowledges the support of the C. V. Starr Center for Applied Economics at New York 
University, and D. Marc Kilgour the support of the Social Sciences and Humanities Research Council of 
Canada.  We thank Damon Coletta, Peter C. Fis hburn, Stephen A. Flanders, Bernard Grofman, Christian 
List, Elan Pavlov, Etel Solingen, Francis Edward Su, Todd Kaplan, Shlomo Weber, William S. Zwicker for 
valuable discussions and comments.  We are especially grateful to Nicholas R. Miller and three anonymous 
referees for suggestions that substantially improved our original paper, entitled “The Paradox of 
Disconnected Coalitions.”   
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strategic questions, such as a player’s wanting to join one player (but not another) 

because the former (but not the latter) would make the coalition winning.      

In both coalition-formation models, each player either ranks or rates every other 

player in terms of that player’s desirability as a coalition partner (alternatively, players 

could rank or rate policy alternatives according to their desirability).  They progressively 

descend in their preference rankings, or move toward the ideal positions of other players 

in their ratings, until there is a simple majority of members that considers every other 

member of that majority acceptable as a coalition partner (or every policy alternative in a 

set acceptable).2 

We call coalition formation constrained if less-than-majority coalitions, or 

subcoalitions, which do not yet constitute a majority, fuse into composite players whose 

composite position restricts the positions of their component members (in a way to be 

made precise later).  Treating these composite players as single players—whose 

component members can no longer be separated—in a smaller game, we repeat the 

movement of players toward each other until new subcoalitions form.  This process 

continues until a majority coalition forms.   

If composite players do not form, and only the preferences of individual players 

matter, we call coalition formation unconstrained.  Whether constrained or 

unconstrained, the descent in player preferences, or movement toward the ideal positions 

of other players, proceeds in the manner of “fallback bargaining” (Brams and Kilgour, 

2001), which we will describe and illustrate in section 4.   

Players’ preferences are ordinally single-peaked if   

• all players can be ordered along a line such that each player’s preferences for  

  coalition partners declines to the left and right of its ideal position;  

                                                 

2We will illustrate in section 6 the isomorphism between models in which players rank/rate other players 
and models in which they rank/rate policy alternatives. 
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• this ordering is the same for all players.  

More stringently, preferences are  cardinally single-peaked  if  

• there exists a single spatial representation of player positions on the line such that  

  each player’s less preferred coalition partners are farther away from it. 

The existence of a single representation ensures that the players have similar perceptions 

of the distances between players’ positions, as we will show later. 

Disconnected coalitions may be the first majority coalitions to form under either 

unconstrained or constrained coalition forma tion if preferences are ordinally single-

peaked but not if they are cardinally single-peaked.  To illustrate a disconnected 

coalition, assume that five players can be ordered 1-2-3-4-5 along a line from left to right.  

Then the first majority coalition to form might be {1, 2, 4}—without player 3—creating a 

“hole” in an otherwise connected coalition.     

This seems paradoxical, because if any individual player considers both players 2 

and 4 desirable as coalition partners, ordinal single-peakedness implies that it must also 

consider player 3 desirable.  Indeed, if preferences are ordinally single-peaked, the 

preferred coalition partners of each player comprise a cluster, without holes, around that 

player.  Yet, as our models show, connected individual preferences of players can result 

in a disconnected majority coalition. 3     

The paper proceeds as follows.  In section 2, we distinguish between ordinally 

single-peaked and cardinally single-peaked preferences, showing in what sense the latter 

                                                 

3Garrett and Tsebelis (1999:  294) declare such a coalition “impossible” but offer no explanation of why 
this is the case, except that an “excluded member [from an otherwise connected coalition] will go along.”  
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are consistent but the former are not.   In section 3, we show that there may be no stable 

majority coalitions, whether preferences are ordinally single-peaked or cardinally single-

peaked.   

In the absence of such a stable outcome, we focus on processes of coalition 

formation, analyzing first what we call fallback, or unconstrained, coalition formation in 

section 4.  We demonstrate that disconnected coalitions can occur with as few as five 

players, but a unique disconnected coalition requires at least seven players.  We then 

analyze other properties of fallback coalitions, especially those related to its size and the 

“spread” of its members.  

The build-up, or constrained, model, which requires a measure of numerical 

distance rather than ordinal ranks, is introduced and analyzed in section 5.  While it tends 

to produce larger majority coalitions than the fallback model, it can lead to a unique 

disconnected coalition with as few as five players. 

We present our conclusions in section 6, emphasizing the importance of analyzing 

the dynamics of coalition formation rather than just looking for stability.  In addition, we 

comment on the applicability of the models to coalition formation in legislatures and 

military alliances.    

2.  Ordinally Single-Peaked and Cardinally Single-Peaked Preferences 

Preferences are said to be ordinally single-peaked if there exists an ordering of 

players, along a single dimension, such that each player’s more-preferred coalition 

partners are closer to it than its less-preferred coalition partners.  Put ano ther way, each 

                                                                                                                                                 
We will show that this need not be the case.  The literature on spatial models of voting is vast, but good 
overviews can be found in Hinich and Munger (1997) and Shepsle and Bonchek (1997).    
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player’s preference for coalition partners declines the farther they are from the player’s 

ideal (peak) position on this dimension.   

That preferences are not always ordinally single-peaked is illustrated by a three-

person example, based on the Condorcet voting paradox, wherein players rank each other 

as coalition partners as follows: 

Example A:          1:   2  3          2:  3 1          3:  1 2.  

Thus, player 1’s first choice of a coalition partner is player 2, and its second choice is 

player 3.  While we assume that player i ranks itself highest—that is, it most desires that 

it be included in any majority coalition that forms—we indicate only its ranking of other 

players in its preference ordering.4 

It is straightforward to check that none of the 3! = 6 orderings of the players along 

a single dimension, such as 1-2-3 that might be represented as,   

1                                        2                    3, 

can be consistent with the preferences in Example A.  The ordering illustrated is 

consistent with the rankings of players 1 and 2 in Example A, but not with that of player 

3, because player 3 prefers player 1 to player 2. 

Ordinal single-peakedness requires only that each player’s preference be 

describable by the same left-right ordering of players.  There is no requirement that the 

players have a similar perception of all players’ positions, and therefore of the distances 

                                                 
 
4 It is conceivable that a player would prefer not to be a member of a coalition if the position of the 
coalition without it as a member is closer to its ideal than the position of a coalition with it as a member.  
But here we are describing preferences for coalition partners, and one cannot have a “partner” unless one is 
a member of a coalition.  
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between them (e.g., that player 2 is closer to player 3 than player 1, as shown in the above 

representation).   Indeed, this may be impossible with ordinally single-peaked 

preferences, as illustrated by our next example (with ordering 1-2-3-4): 

Example B:          1:   2  3  4          2:   3  4  1          3:   2  1  4          4:   3  2  1. 

Because player 2 ranks player 1 last as a coalition partner, player 2 (in boldface 

below) must perceive that the distance between it and player 1 is greater than the distance 

between it and player 3, and even between it and player 4: 

Player 2’s perception:     1           2     3          4. 

By comparison, because player 3 ranks player 4 last as a coalition partner, player 3 must 

perceive that the distance between it and player 4 is greater than the distance between it 

and players 1 and 2: 

Player 3’s perception:     1          2     3     4. 

We say that players’ preferences are cardinally single-peaked if it is possible to 

capture them in a single spatial representation of player positions along the real number 

line.  If player i’s position is xi, and player j’s is xj, denote the distance between them by 

dij = |xi - xj|.  (Note that dii = 0.)  Then player i’s preference ordering for coalition partners 

is given by ranking all players, j, in increasing order of dij.  

To demonstrate formally that Example B is ordinally but not cardinally single-

peaked, note that player 2’s ranking implies d34 < d24 < d12, whereas player 3’s ranking 

implies d12 < d13 < d34.  This contradiction shows that Example B, while ordinally single-

peaked with respect to the ordering 1-2-3-4, is not cardinally single-peaked:  Different 
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players order the distances between positions differently, so there is no single spatial 

representation valid for all players.   

We adopt the convention that players with single-peaked preferences are named 1, 

2, 3, . . ., n from left to right.  At the extremes, player 1’s preference ordering must be 1:  

2 3 4 . . . n, and player n’s must be n:  n-1 n-2 . . . 1.  For convenience, we assume that 

players are never equally preferred—that is, no two players are ever equidistant from any 

given player.  

It is easy to see that if preferences are ordinally single-peaked, and if m is any 

integer satisfying 1 = m = n, then player i’s m most-preferred coalition partners, including 

i itself, is the subset {g(i), g(i) + 1, . . ., h(i)}, where and g(i) = i = h(i) and h(i) = g(i) + m 

- 1.5  That is, player i’s most-preferred set of coalition partners forms a cluster, without 

“holes,” around player i.  For instance, if m = 3 in Example B, each player’s three most-

preferred coalition partners are as follows: 

 1:   {1, 2, 3}          2:   {2, 3, 4}          3:   {1, 2, 3}          4:   {2, 3, 4}. 

It can be checked that when preferences are not ordinally single-peaked, any linear 

ordering of the players (i.e., along a line) must result in some player’s set of m most-

preferred coalition partners, for some m, having a hole.  In Example A, for instance, when 

the linear ordering is 1-2-3, player 3’s two most-preferred coalition partners are {1, 3}, 

leaving a hole because of the absence of player 2.  

                                                 
 
5Note that g(i) and h(i) are functions of m as well as i, but we suppress m as an argument to simplify the 
notation. 
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If preferences are cardinally single-peaked and player i is to the left of player j, 

then the set containing player i’s m most-preferred coalition partners must either be 

identical to player j’s or start to the left of j’s.  More precisely,   

Proposition 1.  If preferences are cardinally single-peaked, the clusters around 

each player satisfy the following monotonicity property:  For any m, i < j implies that 

g(i) = g(j).6    

Proof.  To prove this statement, fix m and suppose that j > i.  If j = h(i), the 

statement holds because g(j) = j - m + 1 = h(i) - m + 1 = g(i).  Otherwise, i < j < h(i).  

Suppose that k < g(i).  Because k < i < j, dkj > dki.  Also, because h(i) is among i’s m 

most-preferred coalition partners, and k is not, it must be the case the dki  > di,h(i) > dj,h(i).  

Therefore, dkj  > dj,h(i).  Now assume (to obtain a contradiction) that k is among j’s m 

most-preferred coalition partners.  Then so is h(i), because dkj  > dki  > dj,h(i).  But this is 

impossible, because j’s m most-preferred coalition partners form an interval, Im(j) = {g(j), 

g(j) + 1,  . . . , h(j)}, where h(j) - g(j) = m - 1.  But h(i) - k > h(i) - g(i) = m - 1, 

demonstrating that both h(i) and k cannot both belong to an interval containing m players.  

This contradiction shows that if k < g(i), then k < g(j), completing the proof that g(i) = 

g(j).  Q.E.D.  

To illustrate Proposition 1, consider the following example, in which player 

preferences are cardinally single-peaked: 

                                                 

6Demange’s (1994) notion of “intermediate preferences” also satisfies this monotonicity property.  Whereas 
Demange gives conditions under which intermediate preferences lead to stable connected coalitions in a 
cooperative game-theoretic model, we show in section 3 that there may be no stable coalitions, in a 
noncooperative sense, even when preferences are cardinally single-peaked.      
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Example C:          1:   2  3  4          2:   1  3  4          3:   4  2  1          4:   3  2  1. 

If m = 3, each player’s most-preferred sets of coalition partners are as follows: 

 1:   {1, 2, 3}          2:   {1, 2, 3}          3:   {2, 3, 4}          4:   {2, 3, 4}. 

Notice that (i) player 1 and 2’s, and player 3 and 4’s, most-preferred sets of coalition 

partners are identical and (ii) player 2’s most-preferred set starts with player 1, one 

position to the left of the starting player, 2, in player 3’s most-preferred set.  If players’ 

preferences are cardinally single-peaked, their perceptions of distance can be described 

by a single spatial representation, as illustrated by Example C, 

All players’ perceptions:  1     2                                    3                  4, 

and their orderings are consistent.  

By contrast, the most-preferred sets for m = 3 in Example B, in which preferences 

are ordinally but not cardinally single-peaked, do not satisfy this property:  Player 2’s 

most-preferred set starts with player 2, one position to the right of the starting player, 1, 

in player 3’s most-preferred set.  

Our results so far can be summarized as fo llows: 

1.  If preferences are not single-peaked, as in Example A, they cannot be described 

by a single linear ordering, which means that there are “holes,” with respect to any linear 

ordering of the players, in some player’s set of most-preferred coalition partners.   

2.  If players’ preferences are ordinally single-peaked, as in Example B, there is 

such a linear ordering, and each player’s most-preferred coalition partners form a cluster 

around its preferred position.   
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3.  If preferences are cardinally single-peaked, as in Example C, player positions 

are describable by a single spatial model, rendering players’ perceptions of distance 

similar and their consequent orderings consistent.  Such consistency implies the 

following monotonicity property:  If player i’s position is to the left of player j’s, then i’s 

cluster of most-preferred coalition partners may not lie to the right of j ’s cluster.  

It is worth noting that the “unfolding” technique of Coombs (1964) for determining 

whether stimuli and other kinds of psychological data can be represented by either 

unidimensional or multidimensional scales is closely related to ordinal and cardinal 

single-peakedness.  In the unidimensional case, individual preferences (I scales) are 

ordinally single-peaked if they can be “unfolded” into a qualitative J (“joint”) scale, and 

cardinally single-peaked if they can be unfolded into a quantitative J scale.  Whereas 

Coombs’ interest was in constructing J scales—qualitative or quantitative—from a set of 

I scales, ours is in determining whether a qualitative J scale (preferences are ordinally 

single-peaked) is also a quantitative J scale (preferences are cardinally single-peaked).   

Among other things, Coombs showed that as the number of players increases, the 

proportion of ordinally single-peaked preferences that are cardinally single-peaked tends 

to zero, making disconnected coalitions more likely in our models.  Before analyzing 

disconnected coalitions, however, we next show that neither ordinally nor cardinally 

single-peaked preferences ensure stable coalitions.   

3.  Stable Majority Coalitions:  They May Not Exist 

Define a majority coalition to be stable if no member desires to switch to another 

majority coalition, resulting in a so-called Tiebout equilibrium (Tiebout, 1956; Greenberg 

and Weber, 1985, 1986, 1993; Demange, 1994).  While the cyclical majorities resulting 
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from the Condorcet paradox in Example A obviously preclude such an equilibrium, more 

surprising is that the ordinal single-peakedness of Example B, and even the cardinal 

single-peakedness of Example C, confer no such stability on majority coalitions.   

In analyzing stability, we do not define a game and analyze its equilibria.  Instead, 

we postulate in sections 4 and 5 coalition-formation processes that seem likely to support, 

if not stabilize, the coalitions that form under them.  In doing so, we focus on the 

preferences of players for each other, and on the majority coalitions they lead to, and ask 

if any players would prefer to be in different majority coalitions.   

Proposition 2.  There may be no stable majority coalition even if preferences are  

cardinally or ordinally single-peaked. 

Proof.  We begin by showing the instability of majority coalitions for cardinally 

single-peaked preferences.  Consider Example C, wherein player preferences are 

cardinally single-peaked with respect to ordering 1-2-3-4.7  Now consider majority 

coalition 123.  Player 3 would prefer to be in coalition 234, because it ranks player 4 

higher than player 1 (both coalitions share players 2 and 3); hence, coalition 123 is 

unstable.  Likewise, majority coalition 234 is unstable, because player 3 has the opposite 

preference—it prefers player 1 to player 4 and would, therefore, prefer to be in coalition 

123.  Finally, in the case of the two disconnected majority coalitions, 124 and 134, it is 

easy to show that all three players would each prefer to be in one or the other of the 

connected coalitions, 123 and 234.   

                                                 

7When there are four players, ordinal single-peakedness implies that player 2 may rank either adjacent 
player 1 or adjacent player 3 first—and if player 3, either player 1 or player 4 next.  Player 3 may rank 
either adjacent player 2 or adjacent player 4 first—and if player 2, either player 1 or player 4 next.  Only 
one of these nine possible orderings for players 2 and 3, which is Example B, is ordinally single-peaked 
without also being cardinally single-peaked.  
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Majority coalitions in Example B can be shown to be unstable by a similar 

argument.  This proves that preferences that are ordinally but not cardinally single-

peaked may also not yield stable majority coalitions.  Q.E.D.      

To be sure, the presence of one or more dissatisfied players in every majority 

coalition is not the only criterion of instability.8  Stronger conditions that do ensure 

stability have been proposed in, among other places, Greenberg and Weber (1985, 1986, 

1993), Demange and Henriet (1991), Demange (1994), Bogomolnaia and Jackson (1998), 

Jackson and Moselle (1998), and Burani and Zwicker (2001).  In a review article, 

Greenberg (1994) gives several reasons why, as Greenberg and Weber (1993, p. 63) put 

it, “there is only a relatively small number of results that guarantee the existence of a 

‘stable’ coalition structure.”   

We could follow the example of such equilibrium models and impose conditions 

that would render the coalitions that emerge from our models stable.  However, this 

would detract from our main purpose of providing insight into dynamic processes of 

coalition formation that may, themselves, contribute to stability.  

The approach we take next is algorithmic, rather than axiomatic, in the sense that it 

postulates rules for players’ sequentially forming coalitions without insisting that the 

resulting coalitions be stable.  Indeed, we have shown that one kind of stability may be 

impossible to achieve.  This “generative” approach to deriving macroscopic behavior 

from microscopic assumptions is espoused in, among other places, Epstein (1999).      

                                                 
 
8It is, however, similar to one proposed in a model by Milchtaich and Winter (2000, p. 10):  “A partition is 
unstable if there is at least one individual who would like to move to a different group than the one in 
which he is a member.”  But whereas preference in their model is cardinal, based on the average distance 
between the individual in question and a group’s members, preference in our first model is ordinal.  Unlike 
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4.  Fallback (Unconstrained) Coalition Formation   

We now define and illustrate fallback coalition formation (FB), in which 

subcoalitions that form prior to the emergence of a majority coalition do not constrain the 

formation of such a coalition.  FB proceeds as follows: 

1.  The most desirable coalition partner of each player is considered.  If two players 

mutually desire each other, and this is a majority of players, then this is the majority 

coalition that forms.  The process stops, and we call this a level 1 majority coalition. 

2.  If there is no level 1 majority coalition, then the next-most desirable coalition 

partners of all players are also considered.  If there is a majority of players that mutually 

desire each other at this level, then this is the majority coalition (or coalitions) that forms.  

The process stops, and we call this a level 2 majority coalition.  

3.  The players descend to lower and lower levels in their rankings until a majority 

coalition, all of whose members mutually desire each other, forms for the first time.  The 

process stops, with the resulting largest majority coalition(s) at this level designated an 

FB coalition(s).      

We illustrate FB with the preceding examples:   

Example A:          1:   2  3          2:  3  1          3:  1 2. 

There is no level 1 majority coalition, because no pair of members consider each 

other mutually desirable at this level.  At level 2, however, the grand coalition (of all 

                                                                                                                                                 
either of our models, theirs always leads to stable connected (“segregating”) coalitions and hence does not 
account for strange bedfellows.  
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players), 123, forms, because members of all pairs, 12, 13, and 23, become mutually 

desirable at this level.  Thus, the FB coalition is the grand coalition.  

Example B:          1:   2  3  4          2:   3  4  1          3:   2  1  4          4:   3  2  1. 

At level 1, coalition 23 forms; at level 2, coalitions 13 and 24 form; at level 3, 

coalitions 12, 14, and 34 form, as well as all 3-person coalitions and the grand coalition, 

1234.  Thus, the FB coalition can be the grand coalition, even when majority preferences 

do not cycle (as they do in Example A).   

Likewise in Example C, it is not difficult to show that the FB coalition is the grand 

coalition.  Thus, if preferences are either ordinally single-peaked (Example B) or 

cardinally single-peaked (Example C), the FB coalition may be the grand coalition.       

We next present a five-person example in which preferences are ordinally single-

peaked and there are two FB coalitions, one of which includes nonadjacent players, 

proving the following proposition: 

Proposition 3.  If preferences are ordinally single-peaked, an FB coalition may be 

disconnected. 

Proof.  Assume five players have the following preferences: 

 
Example D (FB Coalition Disconnected but Not Unique) 

1:   2  3  4  5     2:  1  3  4  5     3:   4  5  2  1     4:  3  2  1  5     5:   4  3  2  1 

One can verify that these preferences are ordinally single-peaked, with respect to 

ordering 1-2-3-4-5, by checking that each player’s m most acceptable coalition partners, 

for every m, cluster around it without holes.  However, these preferences are not 
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cardinally single-peaked, because player 3’s ranking implies d45 < d35 < d23, and player 

4’s ranking implies d23 < d24 < d45, which are inconsistent.   

The largest coalitions that form at each level, until two FB coalitions form at level 

3, are as follows (the starred coalitions are “ordinally m-compact,” which will be defined 

after the Proposition 5): 

Level 1:  12*, 34*               Level 2:  35               Level 3:  124, 234 

Notice that we do not include coalitions 14, 23, and 24 at level 3 in our listing of 

coalitions because they are proper subsets of coalitions 124 or 234 at level 3.  Clearly, FB 

coalition 124 is disconnected, with a hole due to the absence of player 3.  Q.E.D. 

The underlying reason that player 3 is excluded from coalition 124 is that whereas 

players 1 and 2 necessarily rank player 3 higher than player 4 (because of ordinal single-

peakedness), player 3 ranks players 2 and 1 at the bottom of its preference order.  In 

particular, player 3 does not consider player 1 acceptable at level 3.  

That pairs of player may rank each other quite differently, even when their 

preferences are single-peaked, differs sharply from Axelrod’s (1997, chs. 4-5) “landscape 

theory” of aggregation, in which the propensities of pairs of players to coalesce are 

assumed to be the same.  Also, landscape theory predicts coalitions, not the dynamic 

process that leads to them. 

We next show that, if the number of players is increased from five to at least 

seven, a disconnected coalition may be the only FB coalition: 

Proposition 4.  If preferences are ordinally single-peaked, the FB coalition can be 

unique and disconnected.  At least seven  players are required for this to happen. 
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Proof.  Assume seven players have the following preferences: 

Example E (FB Coalition Unique and Disconnected) 

  1:   2  3  4  5  6  7               2:   1  3  4  5  6  7               3:   2  1  4  5  6  7        

4:   5  6  3  7  2  1   5:   4  3  2  1  6  7      6:   5  4  3  2  1  7          7:   6  5  4  3  2  1 

 
One can verify that these preferences are ordinally single-peaked, with respect to 

ordering 1-2-3-4-5-6-7, by examining clusters.  However, these preferences are not 

cardinally single-peaked, because player 4’s ranking implies d56 < d46 < d34, whereas 

player 5’s ranking implies d34 < d35 < d56, which are inconsistent.   

The largest coalitions that form at each level until a single (disconnected) FB 

coalition, 1235, forms at level 4 are as follows: 

Level 1:  12*, 45*      Level 2:  46, 123*      Level 3:  34      Level 4:  47, 1235*  

To show that a unique disconnected FB coalition requires at least 7 players, note that any 

coalition of size k that forms at level k - 1 must be connected.  Consequently, if n = 6, a 

disconnected coalition of 4 players must form by level 4; in fact, at level 5 the grand 

coalition forms.   

Because all players mus t rank either player 1 or player 6 last at level 4, the 

connected coalition 2345 must form at this level.  Thus, even if a disconnected coalition 

also forms at level 4, it will not be unique.  Analogously, a unique disconnected coalition 

of 3 players cannot form if n = 5; if n = 4, it is easy to check that no disconnected 

coalition can form.  Q.E.D. 
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Observe that the formation of disconnected coalitions does not depend on players’ 

having preferences over subsets.  In Example E, for instance, the formation of 

disconnected coalition 1235 is unrelated to whether player 1 prefers 125 or 134 (either 

preference is possible). 

We next describe some properties of FB coalitions. 

Proposition 5.  FB coalitions may not be minimal majority coalitions, whether 

preferences are ordinally single-peaked, cardinally single-peaked, or neither. 

Proof.  The FB coalitions in Example B (ordinally single-peaked preferences), 

Example C (cardinally single-peaked preferences), and Example A (neither) are all the 

grand coalitions, not minimal majority coalitions of three players (Examples B and C) or 

two players (Example A).  Q.E.D. 

We next investigate properties of FB coalitions relating to their “spread.”  The 

ordinal dispersion (Odisp) of a coalition of size m is the sum, over all members of the 

coalition, of the minimum number of pairwise switches (in adjacent preferences) that are 

required to put the coalition members in position 1, 2, …, m of the player’s ranking. 

Example A:  Odisp (13) = 1 + 0 = 1 (player 1 must switch 2 and 3 to induce ranking 1 3;  

                       player 3 need make no switches to induce ranking 3 1). 

Example B:  Odisp (124) = 1 + 1 + 2 = 4 (for players 1, 2, and 4, respectively).   

Call a coalition of size m that minimizes Odisp the ordinally m-compact coalition.  

These coalitions are starred in Examples D and E.  We next show that FB coalitions may 

or may not be ordinally m-compact if preferences are ordinally single-peaked.  
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Proposition 6.  If preferences are ordinally single-peaked, no FB coalition may be 

ordinally m-compact. 

Proof.   In Example D, FB disconnected coalition 124 requires four pairwise 

switches, FB connected coalition 234 requires three, but non-FB 3-coalition 345 requires 

only two pairwise switches and is ordinally 3-compact.  Q.E.D. 

 
The fact that disconnected FB 3-coalition 124 in Example D is not ordinally 3-

compact does not imply that disconnected coalitions cannot be ordinally m-compact:  

Proposition 7.  If preferences are ordinally single-peaked, a disconnected FB 

coalition may be ordinally m-compact. 

Proof.  Observe that disconnected FB 4-coalition 1235 in Example E, which 

requires six pairwise switches, is starred.  Connected 4-coalitions 1234, 2345, 3456, and 

4567 require, respectively, 8, 13, 8, and 10 pairwise switches; disconnected 4-coalitions, 

other than 1235, require even more.  Hence, disconnected 4-coalition 1235 is ordinally 4-

compact.  Q.E.D.    

Define the ordinal diameter (Odiam) of a coalition to be the maximum, over all 

members of the coalition, of the distance in ranks between each player (ranked first in its 

own ordering) and its least-preferred coalition member. 

Example A:  Odiam (13) = max {2, 1} = 2 (player 3 is ranked 3rd by player 1, giving it a  

                       distance of 3 – 1 = 2 ; player 1 is ranked 2nd by player 3, giving it a      

                       distance of 2 – 1 = 1).  

Example B:  Odiam (124) = max {3, 3, 3} = 3 (for players 1, 2, and 4, respectively). 
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Call the coalition of size m that minimizes Odiam the ordinally m-narrow 
coalition. 

Proposition 8.  All FB coalitions are ordinally m-narrow.9  

Proof.  Because the descent stops at the level at which, for the first time, a majority 

of players considers each other mutually acceptable, any earlier stoppage would not 

produce a majority coalition.  Any majority coalition not an FB coalition must have, for 

some pair of players, greater rank difference.  Q.E.D. 

In Example D, because FB coalition 234 appears for the first time at level 3, we 

know there is at least one player (in this case, player 3) that ranks another player (player 

2) 3rd  in coalition 234; likewise for FB disconnected coalition 124.  But non-FB coalition 

345, which we showed earlier is ordinally 3-compact, scores worse on the Odiam 

criterion:  Player 4 ranks player 5 last (i.e., its 4th choice), illustrating that an ordinally m-

compact coalition may not be ordinally m-narrow.  Hence, these concepts tap two 

different aspects of the spread of FB coalitions.    

When an ordinally m-narrow FB coalition is not ordinally m-compact, as in 

Example D, 10 the FB coalition is probably more difficult to disrupt than the ordinally m-

compact coalition.  The reason is that the ordinally m-compact coalition must contain at 

least one player that is ranked lower by some coalition member than the FB coalition.  

This less-desired player would seem a more likely candidate for replacement than any 

member of the FB coalition, rendering the FB coalition more stable.  

                                                 
 
9 Unlike our earlier propositions, this proposition holds for any preferences, not just those that are ordinally 
or cardinally single-peaked. 

10In Example E, by contrast, the ordinally 4-compact coalition, 1235, is also the ordinally 4-narrow FB 
coalition. 
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The property of ordinal m-narrowness of FB coalitions notwithstanding, FB 

coalitions that are disconnected would still seem fragile, especially if the player left out is 

the Condorcet player (the player preferred by a majority of players in pairwise 

comparisons to every other player).  As a case in point, player 3 in Example D, and 

player 4 in Example D, are Condorcet players, but they are the players left out of the 

disconnected FB coalitions in each example.  This can never be the case if preferences 

are cardinally single-peaked, which also preclude disconnected FB coalitions.  

Proposition 9.  If preferences are cardinally single-peaked, then every FB 

coalition is connected.  Moreover, if the number of players is odd, every majority 

coalition includes the (unique) Condorcet player. 

Proof.  Recall the monotonicity property of Proposition 1:  If preferences are 

cardinally single-peaked, then the cluster of any player i’s m most-preferred coalition 

partners, Im(i) = {g(i), g(i) + 1, …, h(i)}, satisfies g(i) = g(j) whenever i < j.  Recall that 

h(i) = g(i) + m – 1.  

Now suppose that i < j < k, and i and k are members of an FB coalition of size m.  

Then any member e of the coalition must also belong to Im(j), because e = g(k) = g(j), and 

e = h(i) = h(j).  Also, j must belong to Im(e), because j > i = g(e) and j < k = h(e).  It 

follows that j belongs to the coalition, so it is connected.  Because the coalition has more 

than half the members, it must include the median player, which is the unique Condorcet 

player if the number of players is odd.  Q.E.D. 

So far we have shown that if preferences are ordinally single-peaked,  

• FB can produce non-unique disconnected majority coalitions if there are at least  
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  five players, unique disconnected majority coalitions if there are at least seven  

  players;    

• FB coalitions need be neither minimal majority nor ordinally m-compact  

  coalitions, but they are always ordinally m-narrow.   

If preferences are cardinally single-peaked, 

• FB coalitions will always be connected and include the Condorcet (median)  

  player if there is an odd number of players.  

Thus, if players’ clusters of preferred coalition partners satisfy the monotonicity property 

of Proposition 1—which renders players’ perceptions of distance similar and the ir 

consequent orderings consistent—disconnected coalitions are ruled out and unique 

Condorcet players are ruled in. 

5.  Build-Up (Constrained) Coalition Formation 

In this section, we drop the assumption that the preferences of players are ordinal.  

Instead, we assume that players can indicate their degrees of preference for coalition 

partners by expressing, in quantitative terms, how much more they prefer, say, a first-

choice coalition partner to a second-choice partner.   

We continue to identify preference with spatial proximity, but now defined 

numerically.  For instance, consider Example C, in which the preferences of the players 

are cardinally single-peaked, so the players have a common perception of the ordering of 

distances between player ideal positions that was illustrated in section 2.  We can turn 
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this ordinal representation into a numerical one by making the ideal positions of players 

real numbers on [0, 1], as illustrated underneath the line below: 

Example C´     

All players’ perceptions:  1     2                               3            4. 
        0    .2                              .7            1 

Instead of assuming, as under FB, that the players descend from their ideal points 

to lower and lower ranks, we assume the following in our model of build-up coalition 

formation (BU):   

1.  The players increase, at a constant rate, the radii of positions, starting from their 

ideal positions, that they consider acceptable.11  

2.  When the players’ radii touch, so they find each other mutually acceptable, they 

become a single composite player (or subcoalition).  The position of the composite player 

is the average of the ideal positions of its members.12    

3.  Each time a composite player forms, the expansion process begins again in the 

new and smaller “game,” comprising both individual and composite players, until a 

majority coalition forms for the first time.  The process stops, with the resulting largest 

majority coalition(s) designated BU coalition(s).     

We illustrate BU with Example C´: 

                                                 

11This is analogous to a knife moving across a cake in the fair-division literature (Brams and Taylor, 1996; 
Robertson and Webb, 1998), except that in our coalition-formation model, two knives move in opposite 
directions from an ideal position.  Also, no player calls “stop” to halt the knife; instead, the process stops, 
automatically, when a majority coalition forms for the first time. 
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The first subcoalition to form is 12, which becomes a composite player at .1: 

All players’ perceptions:    12                                 3             4. 
          .1                                 .7             1 

The next subcoalition to form is 34, which becomes a composite player at .85: 

All players’ perceptions:    12                                       34___. 
          .1                                       .85       

Finally, the grand coalition, 1234, will form at position (.10 + .85)/2 = .475,13 which 

becomes the BU coalition.     

Coalition formation is constrained in the BU model, because the players in each 

subcoalition that forms, now fused into a single player, cannot be selectively excluded 

from any future majority coalition.  In particular, player 4 would be left out if there were 

not this fusion under BU:  Convergence would be to coalition 123,  separated by a 

distance of .7, before it would be to coalition 234, separated by a distance of .8.  

Thus, it is the grand coalition, 1234, that forms in Example C´ under BU.  Because 

the build-up of coalitions has a history, whose lineage is the sequence of subcoalitions 

that form, the BU model is path dependent.  The dependence in this example suggests 

that larger majority coalitions will tend to form under BU than under FB.  

One might think that the constraints on coalition formation under BU would 

prevent the formation of disconnected coalitions, but this is not the case: 

                                                                                                                                                 
12 Note that if the BU model were ordinal, like the FB model, we could not calculate an average position, 
which is one reason we have based BU on numerically ideal positions. 

13Here simple averaging of the positions of individual players, and of the pairs that combine is possible, but 
later we will need to do weighted averaging to determine the coalition position when subcoalitions of 
different sizes combine.  The successive use of weighted averaging to determine the position of any BU 
coalition is equivalent to the simple averaging of the positions of all its individual members.    
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Proposition 10.  If preferences are ordinally single-peaked, a BU coalition can be 

the unique disconnected FB coalition if there are five, but not fewer, players.  

Proof.  Assume that players 1, 2, 4, and 5 have a common perception of distance 

that differs from that of player 3: 

Example F 

Player 1, 2, 4 and 5’s perceptions:  1     2    3     4                                       5 
             0    .1   .2    .3                                       1 

         Player 3’s perception:  1     2                   3                        4     5. 
             0    .1                  .5                       .9     1 

We obtain after .1 unit has been traversed subcoalition 12 (notice that subcoalitions 34 

and 45 do not form, because one player in each is more than .1 units from the other):  

Player 1, 2, 4, and 5’s perceptions:   12       3    4                                       5 
              .05      .2   .3                                       1 

                    Player 3’s perception:   12                         3                     4    5. 
              .05                       .5                    .9    1 

Because for players 1, 2, and 4 the distance separating composite player 12 and player 4 

is .25 units, BU disconnected coalition 124 will form next at position [2(.05) + .3]/3 = 

.133 for players 1, 2, 4, and 5, and position [2(.05) +  .9]/3 = .333 for player 3.   

Such a disconnected coalition cannot form if there are only three or four players, 

because a disconnected coalition would have to include both endpoints.  Consequently, 

the grand coalition would form at the same time as all smaller majority coalitions, so a 

disconnected majority coalition cannot form under the FB cardinal model with only four 

or fewer players.  Q.E.D.  
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The “problem” for player 3 in Example F is that whereas players 1, 2, and 4 

consider player 3 to be acceptable, player 3 does not deem them acceptable because it is 

too far away, on both the left (.45 units from subcoalition 12) and on the right (.40 units 

from player 4).  To be sure, player 5 is even farther from all players—except as player 3 

perceives the situation—so player 5 will suffer the most when disconnected coalition 124 

forms at position .133.     

While the BU model may tend to produce larger majority coalitions than the FB 

model, Example F demonstrates that BU may, nevertheless, produce minimal-majority 

coalitions, and disconnected ones at that, if preferences are ordinally single-peaked.  

Grofman (1982) and Straffin and Grofman (1984) show, in a dynamic model of 

coalition formation that somewhat resembles our BU model, that coalitions will always 

be connected in one dimension but not necessarily in two or more dimensions (i.e., all 

players in the convex hull defined by the spatial positions of coalition members may not 

be in the coalition, creating “holes” in space rather than along a line).14  Proposition 10, 

however, demonstrates that coalitions need not be connected, even in one dimension, if 

preferences are ordinally single-peaked.  

For FB, we earlier defined notions of ordinal m-compactness and m-narrowness, 

proving that FB coalitions are always ordinally m-narrow but may not be ordinally m-

compact.  We can define analogous notions for BU, with a coalition’s diameter (on which 

narrowness is based) and its dispersion (on which compactness is based) numerical 

distances rather than differences in ranks.   

                                                 
 
14 For extensions of this model, and applications to coalition-formation data in different European 
parliamentary democracies, see Grofman (1996) and Grofman, Straffin, and Noviello (1996).  Laver and 
Schofield (1992), van Deemen (1997), and de Vries (1999) also analyze parliamentary coalitions. 
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We forego formal definitions of these notions, because the calculations we make in 

the example that proves Proposition 11 makes them evident. 

Proposition 11.  If preferences are cardinally single-peaked, a BU coalition may 

be neither numerically m-compact nor numerically m-narrow.   

Proof.  Consider the following 5-person example:  

Example G 

All players’ perceptions:  1          2          3         4           5. 
                                          0        .26       .52      .72          1 

The first subcoalition to form under BU is 34, which becomes a composite player at 

position .62: 

All players’ perceptions:  1          2             34                 5. 
                                          0        .26           .62                 1 

The next subcoalition to form is 12, which becomes a composite player at position .13: 

All players’ perceptions:      12                   34                 5. 
                                             .13                 . 62                 1 

Finally, BU coalition 345 will form at position [2(.62) + 1]/3 = .75: 

All players’ perceptions:     12                           345____. 
                                            .13                           .75        

It is not difficult to show that the sum of distances among all three pairs of members of 

BU coalition 345 is not minimal—coalition 234 minimizes this dispersion—so coalition 

345 is not the (numerically) 3-compact coalition.  Likewise, the maximum distance 
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between the extreme members of BU coalition 345 is not minimal—coalition 234 

minimizes this diameter—so coalition 345 is not the (numerically) 3-narrow coalition.  

Q.E.D. 

The fact that BU coalitions may not be numerically m-narrow, even when 

preferences are cardinally single-peaked, is inconsistent with DeSwann’s (1970, 1973) 

assumption that coalitions minimize “policy distance.”  Axelrod’s (1970) assumption of 

connected coalitions may also be violated—if preferences are ordinally but not cardinally 

single-peaked—under both FB (Propositions 3 and 4) and BU (Proposition 10). 

The assumptions of the DeSwann and Axelrod, though inconsistent with our 

conclusions, have proven quite accurate descriptively, at least in predicting parliamentary 

coalitions.  While our models are intended mainly to explicate processes rather than 

outcomes, they do, nevertheless, pinpoint conditions under which disconnected, non-

compact, or non-narrow coalitions—though perhaps exceptional—are likely to form (see 

section 6 for examples).  

If preferences are cardinally single-peaked, BU coalitions will be connected for 

essentially the same reasons that FB coalitions are (see Proposition 9). 

Proposition 12.  If preferences are cardinally single-peaked, BU coalitions are 

always connected.   

Proof.  The first subcoalition to form under BU comprises the closest pair of 

players, which must be adjacent (otherwise, there would be a closer pair); the first 

subcoalition is therefore connected.  At any stage, the next subcoalition to form must join 

the two closest players at that stage.  Again, these players, which may be either individual 

or composite, must be adjacent.  If all coalitions formed prior to this stage are connected, 
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then the new subcoalition must also be connected.  Thus, at every stage of build-up, a 

majority coalition that forms under BU is connected.  Q.E.D. 

In the final section, we compare our ordinal FB and numerical BU models when 

preferences are ordinally single-peaked and cardinally single-peaked.  We then offer 

some reflections on their applicability to legislative coalitions and military alliances.   

6.  Conclusions and Extensions  

Instability plagues many situations in which players seek to form majority 

coalitions.  Whether the preferences of players for coalition partners are ordinally or 

cardinally single-peaked, at least one player in every majority coalition may prefer a 

different majority coalition and, therefore, have a reason to defect.   

In the face of such instability, we proposed two coalition-formation models, 

fallback (FB) and build-up (BU), that describe how coalitions might plausibly form.  The 

models share the assumption that players coalesce when they find each other mutually 

acceptable. 

Alternatively, we could have assumed that players rank policy alternatives rather 

than each other.  Thus in Example E, assume that the players rank alternatives a, b, c, . . . 

the same as they rank players 1, 2, 3, . . ., making, for instance, player 1’s ranking a > b > 

c > d > e > f > g.  Then it is easy to show that under FB, alternative c will be the first 

supported by a majority coalition—namely, disconnected coalition 1235 at level 3—

which is the same coalition as when the players rank each other.  Similarly, when the 

players place alternatives a, b, c, d, and e on a [0, 1] scale, as they do each other in 

Example F, the set of alternatives, {a, b, d}, will be the first on which a majority 

coalition—namely, disconnected coalition 124—converges under BU.  Thus, 
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disconnected coalitions can also form if players rank policy alternatives or place them on 

a continuum. 

Under FB, players seek coalition partners by descending lower and lower in their 

preference rankings until a majority coalition emerges.  Subcoalitions that form early do 

not restrict future choices, suggesting FB as a model of unconstrained coalition 

formation.  Because players can abandon early subcoalition partners in order to be part of 

the first majority coalition to form later, they may be thought of as acting nonmyopically 

(though not in the sense of anticipating other players’ choices in a game but rather in 

terms of not tying themselves down too early).   

Under BU, by comparison, subcoalitions fuse into composite players that cannot be 

broken apart.  The movement of players toward each other begins afresh each time a new 

composite player forms, which may constrain the build-up of coalitions that would 

otherwise form were only individual players the building blocks.  Thus, BU is myopic in 

the sense that the “baggage” of coalition partners that players pick up early, when 

subcoalitions form that may hurt them later, cannot be detached.   

We showed that both FB and BU may not produce minimal-majority coalitions or 

ordinally or numerically m-compact coalitions that minimize dispersion in m-member 

coalitions.  The two models differ, however, on the criterion of m-narrowness:  FB 

coalitions minimize the maximum difference in ranks of players, whereas BU m-

coalitions do not necessarily ensure that the numerical distance between their most 

extreme members is minimal.   

In legislatures, the myopia of BU is probably more common than the nonmyopia of 

FB in the passage of ordinary legislation.  Typically, small groups of members coalesce 
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to try to put together a larger winning coalition.  Once formed, these groups rarely split 

apart.  However, the combining of these groups can lead to “oversize” majority 

coalitions, as compared with the majority coalitions generated by FB from individual 

players.15   

On the other hand, when a political party is asked to form a new government in a 

parliamentary democracy, FB may be a better mirror of the manner in which the 

governing coalition emerges.  The party’s leaders weigh simultaneously different 

combinations of other parties to try to find the set of coalition partners that it can best 

work with to advance its legislative program.  Because party leaders must think beyond 

the next piece of legislation they want enacted, their thinking is more likely to be 

farsighted and strategic than that of ordinary legislators struggling to win on the next 

vote.   

Whether it is individual legislation or parliamentary control that is sought, the old 

saw that “politics makes strange bedfellows” often turns out to be descriptively accurate.  

Strange bedfellows are also observed in international politics, wherein countries attempt 

to ensure their national security through “unholy alliances.”   

As a case in point, fascist Germany, to neutralize opposition on its eastern front 

just prior to its invasion of Poland that led to the outbreak of World War II, made a 

nonaggression pact with communist Soviet Union in August 1939 (which it violated less 

than two years later in June 1941).  Then Germany—pledged to make Aryans the 

                                                 

15In either case, the build-up is sequential (rather than all at once), which Downs, Rocke, and Barsoom 
(1998) argue contributes to the depth of cooperation among members of a multilateral organization. 
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controlling race—gained (and kept) two more strange bedfellows when, with Italy and 

Japan, it signed the Tripartite Treaty in Berlin in September 1941.16   

More contemporary examples of what Bronner (1999) calls “crossing paths” could 

be given.  In Strange Bedfellows, Grayson (1999) describes the bureaucratic battles, 

especially in the United States, that led to the expansion of NATO in 1998 to include 

three former communist states (the Czech Republic, Hungary, and Poland).   

Our analysis suggests that even when there is a single left-right dimension, it may 

not be so much that players cross paths as have different perceptions of distance along a 

single path that leads them to form disconnected coalitions. True, there may be a second 

salient dimension.  Nevertheless, we think that at least some of the strangeness or 

unholiness of coalition formation in the world is attributable to perceptual differences on 

a single dimension, which reflects ordinal single-peakedness but not cardinal single-

peakedness.

                                                 
 
16Of course, these allies are not so strange if the relevant dimension is democratic-totalitarian regimes, 
because Germany, Italy, Japan, and the Soviet Union were all, in varying degrees, totalitarian states.  But 
because race was so central to the ideology of Nazi Germany, it seems particularly odd that the German-
Japanese alliance endured until the end.      
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