231 research outputs found

    Versatile On-Resin Synthesis of High Mannose Glycosylated Asparagine with Functional Handles

    Get PDF
    Here we present a synthetic route for solid phase synthesis of N-linked glycoconjugates containing high mannose oligosaccharides which allows the incorporation of useful functional handles on the N-terminus of asparagine. In this strategy, the C-terminus of an Fmoc protected aspartic acid residue is first attached to a solid phase support. The side chain of aspartic acid is protected by a 2-phenylisopropyl protecting group, which allows selective deprotection for the introduction of glycosylation. By using a convergent on-resin glycosylamine coupling strategy, an N-glycosidic linkage is successfully formed on the free side chain of the resin bound aspartic acid with a large high mannose oligosaccharide, Man8GlcNAc2, to yield N-linked high mannose glycosylated asparagine. The use of on-resin glycosylamine coupling provides excellent glycosylation yield, can be applied to couple other types of oligosaccharides, and also makes it possible to recover excess oligosaccharides conveniently after the on-resin coupling reaction. Useful functional handles including an alkene (p-vinylbenzoic acid), an alkyne (4-pentynoic acid), biotin, and 5-carboxyfluorescein are then conjugated onto the N-terminal amine of asparagine on-resin after the removal of the Fmoc protecting group. In this way, useful functional handles are introduced onto the glycosylated asparagine while maintaining the structural integrity of the reducing end of the oligosaccharide. The asparagine side chain also serves as a linker between the glycan and the functional group and preserves the native presentation of N-linked glycan which may aid in biochemical and structural studies. As an example of a biochemical study using functionalized high mannose glycosylated asparagine, a fluorescence polarization assay has been utilized to study the binding of the lectin Concanavalin A (ConA) using 5-carboxyfluorescein labeled high mannose glycosylated asparagine

    Exact relations between damage spreading and thermodynamic functions for the N-color Ashkin-Teller model

    Full text link
    Exact results are derived relating quantities computable by the so-called damage spreading method and thermodynamic functions for the N-color Ashkin-Teller model. The results are valid for any ergodic dynamics. Since we restrict our analysis to the ferromagnetic case the results are also valid for any translational invariant lattice. The derived relations should be used in order to determine numerically the N-color Ashkin-Teller critical exponents with better accuracy and less computational efforts than standard Monte Carlo simulations.Comment: 6 pages, to be published in JSTAT (Journal of Statistical Mechanics: Theory and Experiment). The results of a computer simulation were included for N=3 as an example on how to use the analytical relations derived in the paper as a guide to obtain the critical temperature and critical exponent

    The critical Ising lines of the d=2 Ashkin-Teller model

    Full text link
    The universal critical point ratio QQ is exploited to determine positions of the critical Ising transition lines on the phase diagram of the Ashkin-Teller (AT) model on the square lattice. A leading-order expansion of the ratio QQ in the presence of a non-vanishing thermal field is found from finite-size scaling and the corresponding expression is fitted to the accurate perturbative transfer-matrix data calculations for the L×LL\times L square clusters with L≤9L\leq 9.Comment: RevTex, 4 pages, two figure

    Relativistic Effects in the Scalar Meson Dynamics

    Full text link
    A separable potential formalism is used to describe the ππ\pi\pi and KK‾K\overline{K} interactions in the scalar-isoscalar states in the energy range from the ππ\pi\pi threshold up to 1.4 GeV. Introduction of relativistic propagators into a system of Lippmann-Schwinger equations leads to a very good description of the data (χ2=0.93\chi^{2}=0.93 per one degree of freedom). Three poles are found in this energy region: fo(500) (M=506±10M=506\pm 10 MeV, Γ=494±5\Gamma=494\pm 5 MeV), fo(975) (M=973±2M=973\pm 2 MeV, Γ=29±2\Gamma=29\pm 2 MeV) and fo(1400) (M=1430±5M=1430\pm 5 MeV, Γ=145±25\Gamma=145\pm 25 MeV). The fo(975) state can be interpreted as a KK‾K\overline{K} bound state. The fo(500) state may be associated with the often postulated very broad scalar resonance under the KK‾K\overline{K} threshold (sometimes called σ\sigma or ϵ\epsilon meson). The scattering lengths in the ππ\pi\pi and KK‾K\overline{K} channels have also been obtained. The relativistic approach provides qualitatively new results (e.g. the appearance of the fo(500)) in comparison with previously used nonrelativistic approach.Comment: 30 pages in LaTeX + 5 figures available on request. Preprint Orsay No IPNO/TH 93-3

    Cross-imaging system comparison of backscatter coefficient estimates from a tissue-mimicking material

    Get PDF
    A key step toward implementing quantitative ultrasound techniques in a clinical setting is demonstrating that parameters such as the ultrasonic backscatter coefficient (BSC) can be accurately estimated independent of the clinical imaging system used. In previous studies, agreement in BSC estimates for well characterized phantoms was demonstrated across different laboratory systems. The goal of this study was to compare the BSC estimates of a tissue mimicking sample measured using four clinical scanners, each providing RF echo data in the 1-15 MHz frequency range. The sample was previously described and characterized with single-element transducer systems. Using a reference phantom for analysis, excellent quantitative agreement was observed across the four array-based imaging systems for BSC estimates. Additionally, the estimates from data acquired with the clinical systems agreed with theoretical predictions and with estimates from laboratory measurements using single-element transducers

    LaAlO3 stoichiometry found key to electron liquid formation at LaAlO3/SrTiO3 interfaces

    Full text link
    Emergent phenomena, including superconductivity and magnetism, found in the two-dimensional electron liquid (2-DEL) at the interface between the insulators LaAlO3 and SrTiO3 distinguish this rich system from conventional two-dimensional electron gases at compound semiconductor interfaces. The origin of this 2-DEL, however, is highly debated with focus on the role of defects in the SrTiO3 while the LaAlO3 has been assumed perfect. Our experiments and first principles calculations show that the cation stoichiometry of the nominal LaAlO3 layer is key to 2-DEL formation: only Al-rich LaAlO3 results in a 2-DEL. While extrinsic defects including oxygen deficiency are known to render LaAlO3/SrTiO3 samples conducting, our results show that in the absence of such extrinsic defects, an interface 2-DEL can form. Its origin is consistent with an intrinsic electronic reconstruction occurring to counteract a polarization catastrophe. This work provides a roadmap for identifying other interfaces where emergent behaviors await discovery

    DGCR8 HITS-CLIP reveals novel functions for the Microprocessor

    Get PDF
    The Drosha-DGCR8 complex (Microprocessor) is required for microRNA (miRNA) biogenesis. DGCR8 recognizes the RNA substrate, whereas Drosha functions as the endonuclease. High-throughput sequencing and crosslinking immunoprecipitation (HITS-CLIP) was used to identify RNA targets of DGCR8 in human cells. Unexpectedly, miRNAs were not the most abundant targets. DGCR8-bound RNAs also comprised several hundred mRNAs as well as snoRNAs and long non-coding RNAs. We found that the Microprocessor controls the abundance of several mRNAs as well as of MALAT-1. By contrast, DGCR8-mediated cleavage of snoRNAs is independent of Drosha, suggesting the involvement of DGCR8 in cellular complexes with other endonucleases. Interestingly, binding of DGCR8 to cassette exons, acts as a novel mechanism to regulate the relative abundance of alternatively spliced isoforms. Collectively, these data provide new insights in the complex role of DGCR8 in controlling the fate of several classes of RNAs

    Feed-Forward Microprocessing and Splicing Activities at a MicroRNA–Containing Intron

    Get PDF
    The majority of mammalian microRNA (miRNA) genes reside within introns of protein-encoding and non-coding genes, yet the mechanisms coordinating primary transcript processing into both mature miRNA and spliced mRNA are poorly understood. Analysis of melanoma invasion suppressor miR-211 expressed from intron 6 of melastatin revealed that microprocessing of miR-211 promotes splicing of the exon 6–exon 7 junction of melastatin by a mechanism requiring the RNase III activity of Drosha. Additionally, mutations in the 5′ splice site (5′SS), but not in the 3′SS, branch point, or polypyrimidine tract of intron 6 reduced miR-211 biogenesis and Drosha recruitment to intron 6, indicating that 5′SS recognition by the spliceosome promotes microprocessing of miR-211. Globally, knockdown of U1 splicing factors reduced intronic miRNA expression. Our data demonstrate novel mutually-cooperative microprocessing and splicing activities at an intronic miRNA locus and suggest that the initiation of spliceosome assembly may promote microprocessing of intronic miRNAs

    Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    Get PDF
    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces
    • …
    corecore