7,672 research outputs found

    Condensation and Metastability in the 2D Potts Model

    Full text link
    For the first order transition of the Ising model below TcT_c, Isakov has proven that the free energy possesses an essential singularity in the applied field. Such a singularity in the control parameter, anticipated by condensation theory, is believed to be a generic feature of first order transitions, but too weak to be observable. We study these issues for the temperature driven transition of the qq states 2D Potts model at q>qc=4q>q_c=4. Adapting the droplet model to this case, we relate its parameters to the critical properties at qcq_c and confront the free energy to the many informations brought by previous works. The essential singularity predicted at the transition temperature leads to observable effects in numerical data. On a finite lattice, a metastability domain of temperatures is identified, which shrinks to zero in the thermodynamical limit. ~Comment: 32 pages, 6 figures, Late

    Baryon Electromagnetic Properties in Partially Quenched Heavy Hadron Chiral Perturbation Theory

    Full text link
    The electromagnetic properties of baryons containing a heavy quark are calculated at next-to-leading order in partially quenched heavy hadron chiral perturbation theory. Calculations are performed for three light flavors in the isospin limit and additionally for two light non-degenerate flavors. We use partially-quenched charge matrices that are easy to implement on the lattice. The results presented are necessary for the light quark mass extrapolation and zero-momentum extrapolation of lattice QCD and partially quenched lattice QCD calculations of heavy hadron electromagnetic properties. Additionally relations between the sextet electromagnetic form factors and transition form factors are derived.Comment: 29 pages, 3 figures, RevTex

    Can an underestimation of opacity explain B-type pulsators in the SMC?

    Full text link
    Slowly Pulsating B and β\beta Cephei are κ\kappa mechanism driven pulsating B stars. That κ\kappa mechanism works since a peak in the opacity due to a high number of atomic transitions from iron-group elements occurs in the area of logT5.3\log T \approx 5.3. Theoretical results predict very few SPBs and no β\beta Cep to be encountered in low metallicity environments such as the Small Magellanic Cloud. However recent variability surveys of B stars in the SMC reported the detection of a significant number of SPB and β\beta Cep candidates. Though the iron content plays a major role in the excitation of β\beta Cep and SPB pulsations, the chemical mixture representative of the SMC B stars such as recently derived does not leave room for a significant increase of the iron abundance in these stars. Whilst abundance of iron-group elements seems reliable, is the opacity in the iron-group elements bump underestimated? We determine how the opacity profile in B-type stars should change to excite SPB and β\beta Cep pulsations in early-type stars of the SMC.Comment: 5 pages, 7 figures, to appear under electronic form in : Proceedings of the 4th HELAS International Conference: Seismological Challenges for Stellar Structur

    Staggered Chiral Perturbation Theory and the Fourth-Root Trick

    Full text link
    Staggered chiral perturbation theory (schpt) takes into account the "fourth-root trick" for reducing unwanted (taste) degrees of freedom with staggered quarks by multiplying the contribution of each sea quark loop by a factor of 1/4. In the special case of four staggered fields (four flavors, nF=4), I show here that certain assumptions about analyticity and phase structure imply the validity of this procedure for representing the rooting trick in the chiral sector. I start from the observation that, when the four flavors are degenerate, the fourth root simply reduces nF=4 to nF=1. One can then treat nondegenerate quark masses by expanding around the degenerate limit. With additional assumptions on decoupling, the result can be extended to the more interesting cases of nF=3, 2, or 1. A apparent paradox associated with the one-flavor case is resolved. Coupled with some expected features of unrooted staggered quarks in the continuum limit, in particular the restoration of taste symmetry, schpt then implies that the fourth-root trick induces no problems (for example, a violation of unitarity that persists in the continuum limit) in the lowest energy sector of staggered lattice QCD. It also says that the theory with staggered valence quarks and rooted staggered sea quarks behaves like a simple, partially-quenched theory, not like a "mixed" theory in which sea and valence quarks have different lattice actions. In most cases, the assumptions made in this paper are not only sufficient but also necessary for the validity of schpt, so that a variety of possible new routes for testing this validity are opened.Comment: 39 pages, 3 figures. v3: minor changes: improved explanations and less tentative discussion in several places; corresponds to published versio

    Large NcN_c QCD at non-zero chemical potential

    Full text link
    The general issue of large NcN_c QCD at nonzero chemical potential is considered with a focus on understanding the difference between large NcN_c QCD with an isospin chemical potential and large NcN_c QCD with a baryon chemical potential. A simple diagrammatic analysis analogous to `t Hooft's analysis at μ=0\mu=0 implies that the free energy with a given baryon chemical potential is equal to the free energy with an isospin chemical potential of the same value plus 1/Nc1/N_c corrections. Phenomenologically, these two systems behave quite differently. A scenario to explain this difference in light of the diagrammatic analysis is explored. This scenario is based on a phase transition associated with pion condensation when the isospin chemical potential exceeds mπ/2m_\pi/2; associated with this transition there is breakdown of the 1/Nc1/N_c expansion--in the pion condensed phase there is a distinct 1/Nc1/N_c expansion including a larger set of diagrams. While this scenario is natural, there are a number of theoretical issues which at least superficially challenge it. Most of these can be accommodated. However, the behavior of quenched QCD which raises a number of apparently analogous issues cannot be easily understood completely in terms of an analogous scenario. Thus, the overall issue remains open

    The role of rotation on Petersen Diagrams. II The influence of near-degeneracy

    Full text link
    In the present work, the effect of near-degeneracy on rotational Petersen diagrams (RPD) is analysed. Seismic models are computed considering rotation effects on both equilibrium models and adiabatic oscillation frequencies (including second-order near-degeneracy effects). Contamination of coupled modes and coupling strength on the first radial modes are studied in detail. Analysis of relative intrinsic amplitudes of near-degenerate modes reveals that the identity of the fundamental radial mode and its coupled quadrupole pair are almost unaltered once near-degeneracy effects are considered. However, for the first overtone, a mixed radial/quadrupole identity is always predicted. The effect of near-degeneracy on the oscillation frequencies becomes critical for rotational velocities larger than 15-20 km/s, for which large wriggles in the evolution of the period ratios are obtained (up 10210^{-2}). Such wriggles imply uncertainties, in terms of metallicity determinations using RPD, reaching up to 0.50 dex, which can be critical for Pop. I HADS (High Amplitude \dss). In terms of mass determinations, uncertainties reaching up to 0.5 M_sun are predicted. The location of such wriggles is found to be independent of metallicity and rotational velocity, and governed mainly by the avoided-crossing phenomenon.Comment: 8 pages, 7 figures, 1 table. (accepted for publication in A&A

    Improved Analysis of J/psi Decays into a Vector Meson and Two Pseudoscalars

    Get PDF
    Recently, the BES collaboration has published an extensive partial wave analysis of experimental data on J/psi -> phi pi+pi-, J/psi -> omega pi+pi-, J/psi -> phi K+K- and J/psi -> omega K+K-. These new results are analyzed here, with full account of detection efficiencies, in the framework of a chiral unitary description with coupled-channel final state interactions between pi-pi and K-bar K pairs. The emission of a dimeson pair is described in terms of the strange and nonstrange scalar form factors of the pion and the kaon, which include the final state interaction and are constrained by unitarity and by matching to the next-to-leading-order chiral expressions. This procedure allows for a calculation of the S-wave component of the dimeson spectrum including the f_0(980) resonance, and for an estimation of the low-energy constants of Chiral Perturbation Theory, in particular the large N_c suppressed constants L_4^r and L_6^r. The decays in question are also sensitive to physics associated with OZI violation in the 0++ channel. It is found that the S-wave contributions to phi pi+pi-, phi K+K- and omega pi+pi- given by the BES partial-wave analysis may be very well fitted up to a dimeson center-of-mass energy of ~1.2 GeV, for a large and positive value of L_4^r and a value of L_6^r compatible with zero. An accurate determination of the amount of OZI violation in the J/psi -> phi pi+pi- decay is achieved, and the S-wave contribution to omega K+K- near threshold is predicted.Comment: 18 pages, 6 figures, title changed, accepted version for PR

    Size Effect in Fracture: Roughening of Crack Surfaces and Asymptotic Analysis

    Full text link
    Recently the scaling laws describing the roughness development of fracture surfaces was proposed to be related to the macroscopic elastic energy released during crack propagation [Mor00]. On this basis, an energy-based asymptotic analysis allows to extend the link to the nominal strength of structures. We show that a Family-Vicsek scaling leads to the classical size effect of linear elastic fracture mechanics. On the contrary, in the case of an anomalous scaling, there is a smooth transition from the case of no size effect, for small structure sizes, to a power law size effect which appears weaker than the linear elastic fracture mechanics one, in the case of large sizes. This prediction is confirmed by fracture experiments on wood.Comment: 9 pages, 6 figures, accepted for publication in Physical Review

    Mid-infrared interferometry with K band fringe-tracking I. The VLTI MIDI+FSU experiment

    Full text link
    Context: A turbulent atmosphere causes atmospheric piston variations leading to rapid changes in the optical path difference of an interferometer, which causes correlated flux losses. This leads to decreased sensitivity and accuracy in the correlated flux measurement. Aims: To stabilize the N band interferometric signal in MIDI (MID-infrared Interferometric instrument), we use an external fringe tracker working in K band, the so-called FSU-A (fringe sensor unit) of the PRIMA (Phase-Referenced Imaging and Micro-arcsecond Astrometry) facility at VLTI. We present measurements obtained using the newly commissioned and publicly offered MIDI+FSU-A mode. A first characterization of the fringe-tracking performance and resulting gains in the N band are presented. In addition, we demonstrate the possibility of using the FSU-A to measure visibilities in the K band. Methods: We analyzed FSU-A fringe track data of 43 individual observations covering different baselines and object K band magnitudes with respect to the fringe-tracking performance. The N band group delay and phase delay values could be predicted by computing the relative change in the differential water vapor column density from FSU-A data. Visibility measurements in the K band were carried out using a scanning mode of the FSU-A. Results: Using the FSU-A K band group delay and phase delay measurements, we were able to predict the corresponding N band values with high accuracy with residuals of less than 1 micrometer. This allows the coherent integration of the MIDI fringes of faint or resolved N band targets, respectively. With that method we could decrease the detection limit of correlated fluxes of MIDI down to 0.5 Jy (vs. 5 Jy without FSU-A) and 0.05 Jy (vs. 0.2 Jy without FSU-A) using the ATs and UTs, respectively. The K band visibilities could be measured with a precision down to ~2%.Comment: 11 pages, 13 figures, Accepted for publication in A&
    corecore