200 research outputs found

    IUPHAR-DB: updated database content and new features

    Get PDF
    The International Union of Basic and Clinical Pharmacology (IUPHAR) database, IUPHAR-DB (http://www.iuphar-db.org) is an open access, online database providing detailed, expert-driven annotation of the primary literature on human and rodent receptors and other drug targets, together with the substances that act on them. The present release includes information on the products of 646 genes from four major protein classes (G protein-coupled receptors, nuclear hormone receptors, voltage- and ligand-gated ion channels) and ∼3180 bioactive molecules (endogenous ligands, licensed drugs and key pharmacological tools) that interact with them. We have described previously the classification and curation of data for small molecule ligands in the database; in this update we have annotated 366 endogenous peptide ligands with their amino acid sequences, post-translational modifications, links to precursor genes, species differences and relationships with other molecules in the database (e.g. those derived from the same precursor). We have also matched targets with their endogenous ligands (peptides and small molecules), with particular attention paid to identifying bioactive peptide ligands generated by post-translational modification of precursor proteins. Other improvements to the database include enhanced information on the clinical relevance of targets and ligands in the database, more extensive links to other databases and a pilot project for the curation of enzymes as drug targets

    Neuroticism and polymorphisms in the serotonin transporter gene

    Get PDF
    Background. There is evidence for an association between two different polymorphisms of the human serotonin transporter gene (5-HTT) and the personality trait of neuroticism and affective disorder.Methods. We studied the association between neuroticism and polymorphisms in the 5HTT-linked promoter region and in a variable number tandem repeat region (VNTR) of the 5-HTT gene in 204 people aged over 60 derived from a random sample of men and women in the general population. Approximately half of the subjects were in the top 20% of neuroticism scorers and half in the bottom 20%.Results. There were no significant differences in allelic or genotypic frequencies between the high and low neuroticism scorers. There was highly significant linkage disequilibrium between the two 5-HTT gene polymorphisms, and haplotype analysis showed no association between neuroticism level and haplotype.Conclusions. Reports of an association between two 5-HTT gene polymorphisms and the personality trait of neuroticism are not supported by these results.</jats:p

    VIP and PACAP receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Vasoactive Intestinal Peptide Receptors [64, 65]) are activated by the endogenous peptides VIP, PACAP-38, PACAP-27, peptide histidine isoleucineamide (PHI), peptide histidine methionineamide (PHM) and peptide histidine valine (PHV). VPAC1 and VPAC2 receptors display comparable affinity for the PACAP peptides, PACAP-27 and PACAP-38, and VIP, whereas PACAP-27 and PACAP-38 are >100 fold more potent than VIP as agonists of most isoforms of the PAC1 receptor. However, one splice variant of the human PAC1 receptor has been reported to respond to PACAP-38, PACAP-27 and VIP with comparable affinity [29]. PG 99-465 [115] has been used as a selective VPAC2 receptor antagonist in a number of physiological studies, but has been reported to have significant activity at VPAC1 and PAC1 receptors [35]. The selective PAC1 receptor agonist maxadilan, was extracted from the salivary glands of sand flies (Lutzomyia longipalpis) and has no sequence homology to VIP or the PACAP peptides [116]. Two deletion variants of maxadilan, M65 [180] and Max.d.4 [117] have been reported to be PAC1 receptor antagonists, but these peptides have not been extensively characterised

    VIP and PACAP receptors in GtoPdb v.2023.1

    Get PDF
    Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Vasoactive Intestinal Peptide Receptors [65, 66]) are activated by the endogenous peptides VIP, PACAP-38, PACAP-27, peptide histidine isoleucineamide (PHI), peptide histidine methionineamide (PHM) and peptide histidine valine (PHV). VPAC1 and VPAC2 receptors display comparable affinity for the PACAP peptides, PACAP-27 and PACAP-38, and VIP, whereas PACAP-27 and PACAP-38 are &gt;100 fold more potent than VIP as agonists of most isoforms of the PAC1 receptor. However, one splice variant of the human PAC1 receptor has been reported to respond to PACAP-38, PACAP-27 and VIP with comparable affinity [30]. PG 99-465 [117] has been used as a selective VPAC2 receptor antagonist in a number of physiological studies, but has been reported to have significant activity at VPAC1 and PAC1 receptors [36]. The selective PAC1 receptor agonist maxadilan, was extracted from the salivary glands of sand flies (Lutzomyia longipalpis) and has no sequence homology to VIP or the PACAP peptides [118]. Two deletion variants of maxadilan, M65 [183] and Max.d.4 [119] have been reported to be PAC1 receptor antagonists, but these peptides have not been extensively characterised

    Network Dynamics Mediate Circadian Clock Plasticity

    Get PDF
    A circadian clock governs most aspects of mammalian behavior. Although its properties are in part genetically determined, altered light-dark environment can change circadian period length through a mechanism requiring de novo DNA methylation. We show here that this mechanism is mediated not via cell-autonomous clock properties, but rather through altered networking within the suprachiasmatic nuclei (SCN), the circadian “master clock,” which is DNA methylated in region-specific manner. DNA methylation is necessary to temporally reorganize circadian phasing among SCN neurons, which in turn changes the period length of the network as a whole. Interruption of neural communication by inhibiting neuronal firing or by physical cutting suppresses both SCN reorganization and period changes. Mathematical modeling suggests, and experiments confirm, that this SCN reorganization depends upon GABAergic signaling. Our results therefore show that basic circadian clock properties are governed by dynamic interactions among SCN neurons, with neuroadaptations in network function driven by the environment

    Increased expression of the 5-HT transporter confers a low-anxiety phenotype linked to decreased 5-HT transmission

    Get PDF
    A commonly occurring polymorphic variant of the human 5-hydroxytryptamine (5-HT) transporter (5-HTT) gene that increases 5-HTT expression has been associated with reduced anxiety levels in human volunteer and patient populations. However, it is not known whether this linkage between genotype and anxiety relates to variation in 5-HTT expression and consequent changes in 5-HT transmission. Here we test this hypothesis by measuring the neurochemical and behavioral characteristics of a mouse genetically engineered to overexpress the 5-HTT. Transgenic mice overexpressing the human 5-HTT (h5-HTT) were produced from a 500 kb yeast artificial chromosome construct. These transgenic mice showed the presence of h5-HTT mRNA in the midbrain raphe nuclei, as well as a twofold to threefold increase in 5-HTT binding sites in the raphe nuclei and a range of forebrain regions. The transgenic mice had reduced regional brain whole-tissue levels of 5-HT and, in microdialysis experiments, decreased brain extracellular 5-HT, which reversed on administration of the 5-HTT inhibitor paroxetine. Compared with wild-type mice, the transgenic mice exhibited a low-anxiety phenotype in plus maze and hyponeophagia tests. Furthermore, in the plus maze test, the low-anxiety phenotype of the transgenic mice was reversed by acute administration of paroxetine, suggesting a direct link between the behavior, 5-HTT overexpression, and low extracellular 5-HT. In toto, these findings demonstrate that associations between increased 5-HTT expression and anxiety can be modeled in mice and may be specifically mediated by decreases in 5-HT transmission

    PACAP-38 induces neuronal differentiation of human SH-SY5Y neuroblastoma cells via cAMP-mediated activation of ERK and p38 MAP kinases1

    Get PDF
    The intracellular signaling pathways mediating the neurotrophic actions of pituitary adenylate cyclase-activating polypeptide (PACAP) were investigated in human neuroblastoma SH-SY5Y cells. Previously, we showed that SH-SY5Y cells express the PAC1 and VIP/PACAP receptor type 2 (VPAC2) receptors, and that the robust cAMP production in response to PACAP and vasoactive intestinal peptide (VIP) was mediated by PAC1 receptors (Lutz et al. 2006). Here, we investigated the ability of PACAP-38 to differentiate SH-SY5Y cells by measuring morphological changes and the expression of neuronal markers. PACAP-38 caused a concentration-dependent increase in the number of neurite-bearing cells and an up-regulation in the expression of the neuronal proteins Bcl-2, growth-associated protein-43 (GAP-43) and choline acetyltransferase: VIP was less effective than PACAP-38 and the VPAC2 receptor-specific agonist, Ro 25-1553, had no effect. The effects of PACAP-38 and VIP were blocked by the PAC1 receptor antagonist, PACAP6-38. As observed with PACAP-38, the adenylyl cyclase activator, forskolin, also induced an increase in the number of neurite-bearing cells and an up-regulation in the expression of Bcl-2 and GAP-43. PACAP-induced differentiation was prevented by the adenylyl cyclase inhibitor, 2′,5′-dideoxyadenosine (DDA), but not the protein kinase A (PKA) inhibitor, H89, or by siRNA-mediated knock-down of the PKA catalytic subunit. PACAP-38 and forskolin stimulated the activation of extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAP; p38 MAP kinase) and c-Jun N-terminal kinase (JNK). PACAP-induced neuritogenesis was blocked by the MEK1 inhibitor PD98059 and partially by the p38 MAP kinase inhibitor SB203580. Activation of exchange protein directly activated by cAMP (Epac) partially mimicked the effects of PACAP-38, and led to the phosphorylation of ERK but not p38 MAP kinase. These results provide evidence that the neurotrophic effects of PACAP-38 on human SH-SY5Y neuroblastoma cells are mediated by the PAC1 receptor through a cAMP-dependent but PKA-independent mechanism, and furthermore suggest that this involves Epac-dependent activation of ERK as well as activation of the p38 MAP kinase signaling pathway

    Electrical activity-triggered glucagon-like peptide-1 secretion from primary murine L-cells

    Get PDF
    Glucagon like peptide 1 (GLP-1) based therapies are now widely used for the treatment of type 2 diabetes. Developing our understanding of intestinal GLP-1 release may facilitate the development of new therapeutics aimed at targeting the GLP-1 producing L-cells. This study was undertaken to characterise the electrical activity of primary L-cells and the importance of voltage gated sodium and calcium channels for GLP-1 secretion. Primary murine L-cells were identified and purified using transgenic mice expressing a fluorescent protein driven by the proglucagon promoter. Fluorescent L-cells were identified within primary colonic cultures for patch clamp recordings. GLP-1 secretion was measured from primary colonic cultures. L-cells purified by flow cytometry were used to measure gene expression by microarray and quantitative RT-PCR. Electrical activity in L-cells was due to large voltage gated sodium currents, inhibition of which by tetrodotoxin reduced both basal and glutamine-stimulated GLP-1 secretion. Voltage gated calcium channels were predominantly of the L-type, Q-type and T-type, by expression analysis, consistent with the finding that GLP-1 release was blocked both by nifedipine and ω-conotoxin MVIIC. We observed large voltage-dependent potassium currents, but only a small chromanol sensitive current that might be attributable to KCNQ1. GLP-1 release from primary L-cells is linked to electrical activity and activation of L-type and Q-type calcium currents. The concept of an electrically excitable L-cell provides a basis for understanding how GLP-1 release may be modulated by nutrient, hormonal and pharmaceutical stimuli
    corecore