8,718 research outputs found

    Flash of photons from the early stage of heavy-ion collisions

    Get PDF
    The dynamics of partonic cascades may be an important aspect for particle production in relativistic collisions of nuclei at CERN SPS and BNL RHIC energies. Within the Parton-Cascade Model, we estimate the production of single photons from such cascades due to scattering of quarks and gluons q g -> q gamma, quark-antiquark annihilation q qbar -> g gamma, or gamma gamma, and from electromagnetic brems-strahlung of quarks q -> q gamma. We find that the latter QED branching process plays the dominant role for photon production, similarly as the QCD branchings q -> q g and g -> g g play a crucial role for parton multiplication. We conclude therefore that photons accompanying the parton cascade evolution during the early stage of heavy-ion collisions shed light on the formation of a partonic plasma.Comment: 4 pages including 3 postscript figure

    Bose-Einstein Final State Symmetrization for Event Generators of Heavy Ion Collisions

    Get PDF
    We discuss algorithms which allow to calculate identical two-particle correlations from numerical simulations of relativistic heavy ion collisions. A toy model is used to illustrate their properties.Comment: Talk given at CRIS'98 (Catania, June 8-12, 1998), to appear in "CRIS'98: Measuring the size of things in the Universe: HBT interferometry and heavy ion physics", (S. Costa et al., eds.), World Scientific, Singapore, 1998. (10 pages Latex, 1 eps-figure, extended version of conference proceedings, Fig1 a,b added and corresponding discussion enlarged

    Bose-Einstein Correlations in a Space-Time Approach to e+ e- Annihilation into Hadrons

    Get PDF
    A new treatment of Bose-Einstein correlations is incorporated in a space-time parton-shower model for e+ e- annihilation into hadrons. Two alternative afterburners are discussed, and we use a simple calculable model to demonstrate that they reproduce successfully the size of the hadron emission region. One of the afterburners is used to calculate two-pion correlations in e+ e- -> Z^0 -> hadrons and e+ e- -> W+ W- -> hadrons. Results are shown with and without resonance decays, for correlations along and transverse to the thrust jet axis in these two classes of events.Comment: 30 pages, Latex, 8 figure

    Parton cascade description of relativistic heavy-ion collisions at CERN SPS energies ?

    Get PDF
    We examine Pb+Pb collisions at CERN SPS energy 158 A GeV, by employing the earlier developed and recently refined parton-cascade/cluster-hadronization model and its Monte Carlo implementation. This space-time model involves the dynamical interplay of perturbative QCD parton production and evolution, with non-perturbative parton-cluster formation and hadron production through cluster decays. Using computer simulations, we are able to follow the entwined time-evolution of parton and hadron degrees of freedom in both position and momentum space, from the instant of nuclear overlap to the final yield of particles. We present and discuss results for the multiplicity distributions, which agree well with the measured data from the CERN SPS, including those for K mesons. The transverse momentum distributions of the produced hadrons are also found to be in good agreement with the preliminary data measured by the NA49 and the WA98 collaboration for the collision of lead nuclei at the CERN SPS. The analysis of the time evolution of transverse energy deposited in the collision zone and the energy density suggests an existence of partonic matter for a time of more than 5 fm.Comment: 16 pages including 7 postscript figure

    Criticality for branching processes in random environment

    Full text link
    We study branching processes in an i.i.d. random environment, where the associated random walk is of the oscillating type. This class of processes generalizes the classical notion of criticality. The main properties of such branching processes are developed under a general assumption, known as Spitzer's condition in fluctuation theory of random walks, and some additional moment condition. We determine the exact asymptotic behavior of the survival probability and prove conditional functional limit theorems for the generation size process and the associated random walk. The results rely on a stimulating interplay between branching process theory and fluctuation theory of random walks.Comment: Published at http://dx.doi.org/10.1214/009117904000000928 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Isoscalar-isovector mass splittings in excited mesons

    Full text link
    Mass splittings between the isovector and isoscalar members of meson nonets arise in part from hadronic loop diagrams which violate the Okubo-Zweig-Iizuka rule. Using a model for these loop processes which works qualitatively well in the established nonets, I tabulate predictions for the splittings and associated isoscalar mixing angles in the remaining nonets below about 2.5 GeV, and explain some of their systematic features. The results for excited vector mesons compare favorably with experiment.Comment: 8 RevTeX pages, including 1 LaTeX figure. CMU-HEP93-23/DOE-ER-40682-4

    Analysis of reaction dynamics at RHIC in a combined parton/hadron transport approach

    Get PDF
    We introduce a transport approach which combines partonic and hadronic degrees of freedom on an equal footing and discuss the resulting reaction dynamics. The initial parton dynamics is modeled in the framework of the parton cascade model, hadronization is performed via a cluster hadronization model and configuration space coalescence, and the hadronic phase is described by a microscopic hadronic transport approach. The resulting reaction dynamics indicates a strong influence of hadronic rescattering on the space-time pattern of hadronic freeze-out and on the shape of transverse mass spectra. Freeze-out times and transverse radii increase by factors of 2 - 3 depending on the hadron species.Comment: 10 pages, 4 eps figures include

    Move Forward and Tell: A Progressive Generator of Video Descriptions

    Full text link
    We present an efficient framework that can generate a coherent paragraph to describe a given video. Previous works on video captioning usually focus on video clips. They typically treat an entire video as a whole and generate the caption conditioned on a single embedding. On the contrary, we consider videos with rich temporal structures and aim to generate paragraph descriptions that can preserve the story flow while being coherent and concise. Towards this goal, we propose a new approach, which produces a descriptive paragraph by assembling temporally localized descriptions. Given a video, it selects a sequence of distinctive clips and generates sentences thereon in a coherent manner. Particularly, the selection of clips and the production of sentences are done jointly and progressively driven by a recurrent network -- what to describe next depends on what have been said before. Here, the recurrent network is learned via self-critical sequence training with both sentence-level and paragraph-level rewards. On the ActivityNet Captions dataset, our method demonstrated the capability of generating high-quality paragraph descriptions for videos. Compared to those by other methods, the descriptions produced by our method are often more relevant, more coherent, and more concise.Comment: Accepted by ECCV 201
    • …
    corecore