
PHYSICAL REVIEW D, VOLUME 61, 054002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server
Bose-Einstein correlations in a space-time approach toe1e2 annihilation into hadrons
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A new treatment of Bose-Einstein correlations is incorporated in a space-time parton-shower model for
e1e2 annihilation into hadrons. Two alternative algorithms are discussed, and we use a simple calculable
model to demonstrate that they reproduce successfully the size of the hadron emission region. One of the
algorithms is used to calculate two-pion correlations ine1e2→Z0→hadrons ande1e2→W1W2→hadrons.
Results are shown with and without resonance decays, for correlations along and transverse to the thrust jet
axis in these two classes of events.
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I. INTRODUCTION

Perturbative parton-shower Monte Carlo simulations@1,2#
combined with models for hadronization provide a very s
cessful description of experimental data one1e2→Z0

→hadrons, deep-inelastic lepton-nucleon scattering, etc
most of the applications made so far, attention has been
centrated on distributions and correlations in moment
space. However, there are some key aspects of the ph
where better understanding@3# of the space-time develop
ment of the hadronic system is desirable@4#. This is particu-
larly true for the treatment of dense hadronic media, such
those produced in heavy-ion collisions, where the format
and expansion of the system are of both experimental
theoretical interest. A prototype for the treatment of su
questions may be provided by the reactione1e2→W1W2

→hadrons, where theW6 do not decay independently, but i
an hadronic environment created by each other. This m
engender collective effects such as color reconnection@5–8#,
parton exogamy@9,10# and Bose-Einstein correlations@11–
13# that may be detected by experiment@14–16#, and could
be of relevance to the measurement ofmW at the CERN
e1e2 collider LEP 2@17#.

A parton-shower Monte Carlo calculation has recen
been developed@18# which incorporates information on th
space-time development that is encoded in perturbative Q
@19#, and combines it with a phenomenological spatial cri
rion for confinement@20# to provide a complete space-tim
description of hadronization. This tool has been applied
the analysis ofe1e2→Z0→hadrons@4#, e1e2→W1W2

→hadrons @9,10#, deep-inelastic lepton-nucleon scatteri
@21# and relativistic heavy-ion collisions@22–24#. In the ap-
plication to e1e2→W1W2→hadrons, it has provided new
insight into collective effects such as parton ‘‘exogam
@10#, namely the marriage of partons from differentW6 par-
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ents to produce daughter clusters of final-state hadrons
the application to relativistic heavy-ion collisions, it has pr
vided useful insights into such issues as the formation
local thermalization of the dense nuclear fireball, hadron p
duction @24#, and the possible suppression of theJ/c
@22,23#. However, little attempt has so far been made to
corporate Bose-Einstein correlations into this space-t
model in a realistic way.

Bose-Einstein correlations have been analyzed in m
experimental situations, includinge1e2 annihilation@14,15#
where there has also been considerable recent theore
progress@25#, and have been used extensively as a too
analyze the hadronic fireballs produced in relativistic hea
ion collisions@26,27#. Considerable recent progress has be
made in the development of the formalism for analyzi
Bose-Einstein correlations@28#, and for implementing them
in an algorithm for models of hadron production@29–31#. It
was shown that Bose-Einstein correlations in the two-part
momentum spectra allow for a detailed reconstruct
@27,28# of the geometry and dynamical state of the react
zone from which the final-state hadrons are emitted. T
purpose of this paper is to describe the implementation
Bose-Einstein correlations in the space-time parton-sho
Monte Carlo calculation mentioned above~see also@32#!,
and to describe pilot applications to the reactionse1e2

→Z0→hadrons ande1e2→W1W2→hadrons. This work
should pave the way for a detailed space-time analysis
hadron production in these reactions using data on t
particle momentum correlations.

We introduce in Sec. II of this paper ‘‘classical’’ an
‘‘quantum’’ algorithms suitable for the calculation of Bose
Einstein correlations in Monte Carlo codes for hadron p
duction. Both algorithms differ in how the numerical eve
simulation is used to define a quantum mechanical ph
space density of emission points. We test these algorithm
Sec. III, using a simple and analytically solvable model@33#
for the hadron source. We verify that Bose-Einstein analy
tools applied to the hadronic spectra generated by the
versions of the algorithm reproduce correctly the inp
source geometry. Then, in Sec. IV we apply the ‘‘quantum
©2000 The American Physical Society02-1
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algorithm to hadronicZ0 and W1W2 final states generate
by a parton-shower Monte Carlo calculation. We calcul
two-pion correlations with and without resonance deca
studying both the longitudinal and transverse momentum
pendences of the correlation functions.

In a final section, we mention possible future studies
ing the approach introduced in this paper. These would
clude implementation of the ‘‘classical’’ version of the Bos
Einstein algorithm and exploration of the influence on t
‘‘quantum’’ algorithm results of varying the assumed wav
packet size.

The present paper describes a first study of 3-dimensi
Bose-Einstein interferometry, differential in the pair mome
tum and including a systematic investigation of resona
decay effects, based on an event generator which prov
full phase-space information. Its intention is to demonstr
the resolving power of such studies with respect to the sp
time structure of the collision events and to pave the way
further, more quantitative investigations in the future. T
scope of the paper had to be limited in this way due to
unfortunate death of the first author. The publication of t
work is motivated by the qualitative progress which has
ready been achieved; quantitative further improvements
to be postponed and will be published elsewhere. The li
tations of the present study and suggested future steps
summarized at the end of the paper.

II. BOSE-EINSTEIN ALGORITHMS

In this section we explain the algorithms with which w
later calculate two-particle correlations of identical pio
from perturbative parton-shower Monte Carlo calculation

A. General considerations

Bose-Einstein correlations reflect thephase-spacedensity
of the hadronic source created in the collision. Contrary
single-particle momentum spectra, they thus also provide
cess to the space-time structure of the reaction zone. A
sistent numerical simulation of Bose-Einstein effects on
two-particle and many-particle momentum distributions th
requires by necessity an algorithm which propagates the
ticles in phase space, rather than in momentum space o
This is what the parton-shower cascade event generatorVNI

does.
The Bose-Einstein symmetrization effects result in an

hancement at small relative momentaq of the 2-particle co-
incidence spectrum relative to the product of single part
spectra. Theq range of this enhancement is inversely rela
to the size of the emission region in space-time. All exist
shower Monte Carlos calculations, whether formulated
phase space or only in momentum space, are based
probabilistic description and thus do not correctly descr
the many-particle symmetrization effects of the quantu
mechanical time evolution. The corresponding quantu
statistical corrections must therefore be implemented,
some approximation, by an ‘‘algorithm’’ at the end of th
classical time evolution.

In momentum-space based Monte Carlo programs suc
JETSET, one tries to implement the clustering of identic
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bosons at small relative momenta by shifting the final st
momenta according to certain prescriptions@12,13#. These
shifting prescriptions are not unique and lead to change
the invariant mass of the particle pair, and thus do not all
one to conserve simultaneously energy and momentum.
thermore, they involve a weighting function which is put
by hand but should, in principle, reflect the~unknown!
space-time structure of the simulated event. A recent atte
to relate the weighting function directly to previously unus
information on the space-time structure of the partic
production process is described in@34#. However, its connec-
tion to the position of the hadrons at ‘‘freeze-out,’’ i.e., d
coupling from the strong interactions, remains at m
indirect.

In the present paper, we study two algorithms@29,30# to
implement Bose-Einstein correlations at the end of
Monte Carlo simulation. These algorithms do not shift t
particle momenta; nor do they alter the output of the ev
generator in any other way. They calculate the single-part
inclusive momentum distribution directly from the outp
momenta of the generator, and the two-particle coincide
spectra from the space-time coordinates and momenta of
ticle pairs from the generator output. They differ in the w
in which they associate with the event generator outpu
quantum-mechanical Wigner phase space densityS(x,K).
Both algorithms assume that the particles propagate fre
from the source to the detector and include only t
quantum-statistical pairwise correlations between ident
bosons. Generalizations of these algorithms to include fin
state interactions@35# and multiparticle correlation effect
@36# have been proposed but not yet implemented num
cally.

The two-particle correlation function is constructed as
ratio of the two-particle coincidence spectrumP2(pa ,pb) and
the product of single-particle inclusive spectra,P1(pa,b),

C~q,K!5N P2~pa ,pb!

P1~pa!P1~pb!
, ~1!

where q5pa2pb is the relative andK5(pa1pb)/2 is the
average pair momentum. With the assumption of indep
dent particle emission the two-particle correlation functi
~1! can then be written as@37–39,28#

C~q,K!5NsS 11

U E d4x S~x,K !eiq•xU2

E d4x S~x,pa!E d4y S~y,pb!
D ,

~2!

whereS(x,p) is the single-particle Wigner phase-space de
sity of the source. In this work we choose the normalizat
N5Ns51 in presenting our results. The implications
other choices of normalization are discussed in Sec. I
The four-vectorspa,b in the denominator on the right-han
side ~RHS! are on shell while the numerator contains t
off-shell four-vectorsq and K with q05Ea2Eb and K0

5(Ea1Eb)/2. The main question is how to relate the eve
2-2
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BOSE-EINSTEIN CORRELATIONS IN A SPACE-TIME . . . PHYSICAL REVIEW D61 054002
generator output to this Wigner density, and how to simul
the RHS of Eq.~2!. This will be discussed in Sec. II C.

B. Normalization of the correlator

The normalizationN in Eq. ~1! does not affect the space
time interpretation of the correlator, and the reader who
only interested in the latter can skip the present subsec
The subtle point we discuss here is that, in the contex
event generator studies, the normalizationN of the correlator
is only fixed after requiring that the Bose-Einstein algorith
affects the simulated multiplicity in a particular way. W
start by recalling the quantum field-theoretical definitions
the single- and two-particle spectra,

P1~p!5Ep^âp
†âp&, ~3!

P2~pa ,pb!5EaEb^âpa

† âpb

† âpb
âpa

&, ~4!

where ^•••& indicates the ensemble of physical sta
~events! for which the correlator is calculated. This implie
the normalizations

E P1~p!
d3p

Ep
5^N̂&, ~5!

E P2~pa ,pb!
d3pa

Ea

d3pb

Eb
5^N̂~N̂21!&, ~6!

where N̂5*(d3p/E)âp
†âp is the particle number operato

We now discuss the physical implications of two differe
normalizations of the correlator:

~1! One can interpret the two-particle correlator as a f
tor @13#

d6spp
BE /d3p1d3p25C~q,K!d6spp

NO/d3p1d3p2 ~7!

relating the measured two-particle differential cross secti
on the LHS to the differential two-particle cross section
sulting from the simulation. Requiring that the Bose-Einst
algorithm conserve event multiplicities on an event-by-ev
level, the corresponding momentum integrated total tw
particle cross sections have to coincide,spp

BE 5spp
NO . This is

the appropriate starting point if total pair cross sections
used in the tuning of the event generator which then,
course, should not be changed by the Bose-Einstein a
rithm. The normalization satisfying these requirements n
malizes both the numerator and denominator of Eq.~1! sepa-
rately to unity@40#,

N5
^N̂&2

^N̂~N̂21!&
. ~8!

This results in a normalizationNs,1 of the two-particle
correlator~2! @41,36,42#.

~2! A different choice of normalization often used
heavy-ion physics is@28#

N5Ns51. ~9!
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Combining Eqs.~1! and ~2!, it follows that

P2~pa ,pb!5EaEb

d6N

d3pad3pb
.P1~pa!P1~pb!

5S Ea

d3N

d3pa
D S Eb

d3N

d3pb
D , ~10!

and, because of Eqs.~5!,~6!, also that

^N̂~N̂21!&.^N̂&2. ~11!

If we interpret the RHS of these equations as the pair spe
and pair multiplicity from the event generator, implying th
the generated multiplicity has a Poisson distribution,^N(N
21)&gen5^N&gen

2 , then this implies that the Bose-Einste
effects have increased the pair multiplicity. This may a
count for some of the effects of Bose-Einstein statistics
the particle-production processes prior to freeze-out@43#.

Depending on whether we require for the Bose-Einst
algorithm the conservation of event multiplicities on a
event-by-event level or aim to mimic Bose-Einstein effe
during the particle-production processes as well, the norm
ization of the two-particle correlator is thus either smal
than unity or unity itself. In the present paper, we are o
investigating the space-time interpretation of the two-parti
correlator, and hence we can setN5Ns51 without any loss
of generality.

C. Wigner densities and event generator output

We now explain how we construct a two-particle spe
trum with the properties~9!–~11! from the event generato
output. For simplicity, we discuss only one particle speci
sayp1. The event generator yields for each collision eve
m a set of final~on-shell! p1 momentapi5(Ei ,pi) and last
interaction pointsr i5(t i ,r i), with i 51,2, . . . ,Nm whereNm
is the total number ofp1 created in eventm:

$~r i ,pi !u i 51,2, . . . ,Nm%. ~12!

They define a classical~positive definite! phase-space den
sity

rclass~x,p!5
1

Nevt
(

m51

Nevt

rclass
(m) ~x,p!

5
1

Nevt
(

m51

Nevt

(
i 51

Nm

d (4)~x2r i !d
(4)~p2pi !. ~13!

The distributionsrclass
(m) (x,p) for individual events cannot be

taken as Wigner densities since they fix the particle coo
nates and momenta simultaneously, thereby violating the
certainty relation. This can affect the calculation of the tw
particle correlator significantly@31#. Furthermore,rclass(x,p)
is always positive, while the Wigner densityS(x,p) can, at
least in principle, become negative. Only when averag
over sufficiently large phase-space regions is the latter g
anteed to be positive definite. On the other hand, it is
likely that suchZitterbewegungoscillations ofS(x,p) or the
2-3
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spiky structure ofrclass(x,p) affect the correlation function
at smallq where the Bose-Einstein effects become visible
is well known@28# that the width of the correlation functio
reflects only the rms width of the Wigner densityS(x,p) in
coordinate space, and that finer structures inS(x,p) ~such as
spikes or quantum oscillations! show up in the correlato
only at largeq and are very hard to resolve experimental
Furthermore, since the event generator performs a Mo
Carlo simulation of a dynamical evolution which is based
quantum-mechanical transition amplitudes, averaging its
put over many simulated events should generate a sm
phase-space distribution~13! which is not in conflict with the
uncertainty relation.

Following these arguments, one can try to identify
rectly the classical phase-space densityrclass(x,p), Eq. ~13!,
averaged over sufficiently many events, with the on-sh
source Wigner densityS(x,p) in Eq. ~2!, in the following
sense:

rclass~x,p!52u~p0!d~p22m2!S~x,p!. ~14!

This ensures the correct normalization to the average m
plicity ^N&:

E d3p

Ep
E d4x S~x;p,Ep!5E d4p d4x rclass~x,p!

5
1

Nevt
(

m51

Nevt

Nm5^N&. ~15!

The identification~14! gives rise to the ‘‘classical’’ version
of our Bose-Einstein algorithm@29#, to be discussed in Sec
II C 1.

Alternatively, if one wants to avoid the conceptual dif
culty of relating an expression like Eq.~13!, where every
term under the sum explicitly violates the uncertainty re
tion, with the source Wigner density, one can associate
set of phase space points~12! with the phase-space location
of the centers of minimum-uncertainty wavepackets@30#:

~r i ,pi ,t i !→ f i~x,t i !5
1

~ps2!3/4
e2(x2ri )

2/(2s2)1 ipi•x.

~16!

In this case one enforces quantum-mechanical consisten
the emission functionS(x,p) at the level of each individua
simulated event. The identification~16! gives rise to the
‘‘quantum’’ version of our Bose-Einstein algorithm@29,30#,
to be discussed in Sec. II C 2. The word ‘‘quantum’’ in th
case stresses the quantum-mechanical consistency o
Wigner density on theevent-by-eventlevel ~which may in-
deed be requiring too much!, while the ‘‘classical’’ algo-
rithm generates a quantum-mechanically consistent emis
function only on theensemblelevel, and only ifrclass does
not violate the uncertainty relation~see Sec. III!.

Before turning to a discussion of these two algorithms
shortly comment on the underlying assumptions. The us
single-particle Wigner densitiesS(x,p) implies that the
N-particle production amplitude factorizes into one-parti
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production amplitudes@44,28#. In general, P2(pa ,pb) is
given by a sum over the two possible permutations of
Fourier transform of the quantum mechanical two-parti
Wigner densityS2(xa ,pa ;xb ,pb) of the source at freeze-ou
@45#; here we assume S2(xa ,pa ;xb ,pb)
5S(xa ,pa)S(xb ,pb). This assumption@which amounts to a
Wick decomposition of the RHS of Eq.~4! @28## implies that
the two particles in the pair are emitted independently fr
each other. It thusneglects dynamical correlationsbetween
the two particles in the pair, due, e.g., to energy-moment
conservation, as well as certainquantum-statistical correla-
tions which may be induced on the two-particle level by t
symmetry of the multi-particle final-state wave functio
While the neglect of dynamical correlations is probably w
justified for heavy-ion collisions for which our algorithm
were developed@29,30#, the same is much less obvious fo
e1e2 collisions. At high energies, however, we expect su
dynamical correlations to affect the two-particle spectru
mostly at large values ofq, where kinematical constraint
play an important role, and not to interfere with the Bos
Einstein correlations at smallq. If this is true, they cance
from the ratio~1! as constructed by our algorithm~see be-
low!. Multi-particle symmetrization effects, on the oth
hand, are more of an issue in heavy-ion physics@36,46#
where the rapidity densities of the produced particles
large, while their neglect ine1e2 collisions seems unprob
lematic. Furthermore, it is known@42# that for certain classes
of multiplicity distributions they do not destroy the factoriz
tion of the two-particle Wigner density which is assum
here.

1. ‘‘Classical’’ version of the Bose-Einstein algorithm

We start from Eqs.~13! and ~14!. The momenta returned
from the event generator are on shell, and we hence w
from now onS(x,p) respectivelyrclass(x,p) for the on-shell
distributions. Thed-function structure ofrclass requires one
in practice to bin in the momentum variable@since thex
dependence is integrated over in Eq.~2!, no binning inx is
necessary there#. For this purpose we introduce the norma
ized ‘‘bin functions’’ with bin width e,

dpi ,p
(e) 5H 1/e3 : pj2

e

2
<pi , j<pj1

e

2
~ j 5x,y,z!,

0 : otherwise,
~17!

or, alternatively, properly normalized Gaussians of widthe,

dpi ,p
(e) 5

1

~pe2!3/2
exp@2~pi2p!2/e2#. ~18!

In the limit e→0, these Gaussian bin functions reduce to
properly normalizedd functionsd (3)(pi2p). For each event
m we calculate the numerator and denominator of Eq.~7!
separately. We find, for the invariant two-particle spectru
in the numerator@29#,
2-4
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P2~pa ,pb!5EaEb(
iÞ j

Nm

$dpi ,pa

(e) dpj ,pb

(e) 1dpi ,K
(e) dpj ,K

(e)

3cos@q•~r i2r j !#%, ~19!

and for the product of single-particle spectra in the deno
nator,

P1~pa!P1~pb!5EaEb(
iÞ j

Nm

(
j

Nm

dpi ,pa

(e) dpj ,pb

(e) . ~20!

In Eq. ~19!, K5(pa1pb)/2 andq5pa2pb define the point in
momentum space at which the correlator is to be evalua
Please note that the momentapi , j of the generated particle
determine only which pairs are selected and contribute to
correlator, but theirweight in the correlator~in particular the
cosine in the exchange term! depends only on thespace-time
coordinatesand not on the momenta of the generated p
ticles.

The correlator~1! is obtained by averaging the numerat
and denominator separately over all even
(1/Nevt)(m51

Nevt •••, and then taking the ratio. Direct insertio
of Eqs.~13!,~14! into Eq.~2! gives Eqs.~19!,~20! without the
restrictioniÞ j on the summation indices. This is a discre
zation artifact, and the pairs withi 5 j formed from the same
particle must be removed by hand in this approach. To p
serve the normalization of the correlator we also remo
them from the denominator. Replacing cos@q•(ri2r j)# by
exp@iq•(ri2r j)#, which is allowed by symmetry under the e
changei↔ j , the weight function can then be factored, a
we obtain

C~q,K!

511

(
m51

Nevt FU(
i 51

Nm

dpi ,K
(e) eiq•r iU2

2(
i 51

Nm

~dpi ,K
(e) !2G

(
m51

Nevt F S (
i 51

Nm

dpi ,pa

(e) D S (
j 51

Nm

dpj ,pb

(e) D 2(
i 51

Nm

dpi ,pa

(e) dpi ,pb

(e) G .

~21!

The subtracted terms in the numerator and denominato
move the spurious contributions from pairs constructed
the same particles. The factorization of the weight funct
provides a dramatic simplification. Each of the sums in E
~21! requires onlyO(Nm) manipulations, a clear advantag
for large average event multiplicities^N& over the evaluation
of Eq. ~19!, which involvesO(Nm

2 ) numerical manipulations
Unfortunately this fails once final-state interactions are
cluded, since the corresponding generalized weights
longer factorize@35#. Also, if one wants to account for mul
tiparticle symmetrization effects, more thanO(Nm

2 ) numeri-
cal manipulations are typically required@36#.

In general the result for the correlator at a fixed po
(q,K) will depend on the bin widthe. Finite event statistics
puts a lower practical limit one. In practice the convergenc
of the results must be tested numerically. We discuss th
statistical requirements in Sec. III in detail for a toy mode
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2. ‘‘Quantum’’ version of the Bose-Einstein algorithm

In the ‘‘quantum’’ version of the Bose-Einstein algorithm
the phase-space coordinates (t i ,r i ,pi) of the generator outpu
are interpreted as the centers of normalized minimu
uncertainty Gaussian wavepackets~16! of spatial widths.
For the one- and two-particle correlator, one finds, instead
Eq. ~21! @30,29#,

Ep

d3N

d3p
5

Ep

Nevt
(

m51

Nevt

nm~p!5
Ep

Nevt
(

m51

Nevt

(
i 51

Nm

si~p!, ~22!

C~q,K!51

1e2s2q2/2

(
m51

Nevt FU(
i 51

Nm

si~K!eiq•r iU2

2(
i 51

Nm

si
2~K!G

(
m51

Nevt Fnm~pa!nm~pb!2(
i 51

Nm

si~pa!si~pb!G ,

~23!

si~p!5p23/2s3e2s2(p2pi )
2
. ~24!

This result can be derived either directly from Eq.~16! fol-
lowing @30# or by replacing the products ofd functions in
Eq. ~13! by the Wigner densities of the corresponding wav
packets, identifying the Wigner densityS(x,p) as the sum of
the corresponding individual Wigner densities@29,30#:

rclass
(m) ~x,p!°S(m)~x,p!5

Ep

p3 (
i 51

Nm

d~x02t i !

3expS 2
~x2r i !

2

s2
2s2~p2pi !

2D .

~25!

In the second derivation, based on Eq.~25!, the spurious
contributions from identical pairs must again be removed
hand. Now Eq.~25! is correctly normalized to the number o
particles,Nm , in the event:

E d3p

Ep
E d4x S(m)~x,p!5Nm . ~26!

The Gaussian single particle probabilitysi(p) describes the
contribution of the generated particlei to the momentum
spectrum atp. In the quantum algorithm, it is the counterpa
of the bin functiondpi ,p

(e) in the ‘‘classical’’ algorithm. The

limit of vanishing bin widthe→0 corresponds to the limi
s→` in which the wave functions~16! become momentum
eigenstates. The difference between the two algorithm
then essentially the prefactor exp(2s2q2/2) in Eq. ~23!
which is a genuine quantum contribution. A momentu
eigenstate is infinitely delocalized in space, and the prefa
exp(2s2q2/2) ensures that this infinite source size is r
flected in a sharp correlatorC(q,K)511dq,0 . We empha-
size that whilee→0 is the relevant physical limit for the
2-5
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‘‘classical’’ algorithm,s→` is not the relevant limit for the
‘‘quantum’’ algorithm ~22!–~24!.

It might seem natural to interprets in terms of the size of
the hadronic cluster at its formation or of its wave function
decoupling from the other particles, which would suggess
values in the ranges;1 fm. However, such arguments a
not rigorous, and in the present paper we treats as a phe-
nomenological parameter. One could in principle adjust t
parameter as part of a general optimization or tuning of
Monte Carlo simulation, but such a study extends beyond
scope of this paper.

It is important to note that, due to the smooth intrins
momentum dependence of the Gaussian wavepackets~16!,
the correlator~23! is a continuous function of bothq andK,
even though the event generator output is discrete. On
other hand, as a result of the piecewise constant nature o
bin functions ~17!, the correlator~21! is only a piecewise
constant function of its arguments, which may, in practi
require binning in bothq andK.

The Bose-Einstein algorithms explained in Sec. II C c
be applied toany model that gives a particle phase-spa
distribution, irrespective of the dynamical history of the pa
ticles. The aim is to reconstruct from the Bose-Einstein c
relations information about the space-time history of the
namical evolution, as one attempts to reconstruct in real-
experiments the space-time structure of collisions from
particle distributions measured by a detector. However, w
a particle sample from an event generator model, deta
knowledge about the dynamical evolution is available. T
allows one to cross-check whether the generated dyna
reproduces the measured Bose-Einstein correlations; i.e.
provides an experimental test of the generated space-
interpretation@32#.

III. TESTS OF THE BOSE-EINSTEIN ALGORITHMS

In this section we show numerical tests of our algorith
using a simple toy model for the source which allows
analytical calculations of the correlation function. We th
illustrate the algorithms discussed in Sec. II C before turn
in Sec. IV to realistic parton-shower calculations.

A. Analytical model studies

We explore the above algorithms with a simple mod
emission function first proposed by Zajc@33#:

rclass
Zajc~x,p!5NsexpF2

1

2~12s2!

3S x2

R0
2

22s
x•p

R0P0
1

p2

P0
2D Gd~x0!, 0<s<1,

~27!

Ns5Ep

N

~2pR0P0A12s2!3
. ~28!
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This distribution is normalized to an event multiplicityN,
and is localized within a total phase-space volume

Vp.s.5~2RsP0!3 Rs[R0A12s2, ~29!

which vanishes fors→1. This s dependence allows one t
study the performance of our numerical algorithms for d
ferent phase-space volumes. The parameters smoothly inter-
polates between completely uncorrelated and comple
position-momentum correlated sources: fors→0, the
position-momentum correlation in Eq.~27! vanishes, and we
are left with two decoupled Gaussians in position and m
mentum space. In the opposite limit the position-moment
correlation is perfect,

lim
s→1

rclass
Zajc~x,p!;d (3)S x

R0
2

p

P0
D d~x0!, ~30!

and the phase-space localization described by the model
lates the Heisenberg uncertainty relation.

How are these properties reflected in the one-part
spectra and two-particle correlation functions? It turns
that in the Zajc model the two-particle correlator is indepe
dent of the pair momentumK, irrespective ofs. Because of
the spherical symmetry of the source and its instantane
time structure, the correlator is thus characterized by
single, K-independent Hanbury-Brown-Twiss~HBT! radius
parameter.

In the ‘‘classical’’ interpretationS(x,p)5rclass
Zajc(x,p), and

the one-particle spectrum and two-particle correlator rea

Ep

dN

d3p
5Ep

N

~2pP0
2!3/2

expS 2
p2

2P0
2D , ~31!

C~q,K!511exp~2Rclass
2 q2!, ~32!

Rclass
2 5Rs

2S 12
1

~2RsP0!2D . ~33!

For sufficiently larges, when the phase-space volume b
comes smaller than unity,

s.scrit5A12
1

~2R0P0!2⇔Vp.s.,1, ~34!

the HBT radius parameter turns negative, which leads to
unphysical rise of the correlation function with increasingq2.
SinceVp.s.51 corresponds to the volume of an elementa
phase-space cell, the change of sign in Eq.~33! is directly
related to the violation of the uncertainty relation by t
emission function~27!.

In the ‘‘quantum’’ interpretation,rclass
Zajc gives the distribu-

tion of centers of Gaussian wavepackets, and the Wig
phase space density is obtained fromrclass

Zajc via Eq. ~26!. The
one-particle spectrum and two-particle correlator then re

Ep

dN

d3p
5Ep

N

~2pP2!3/2
expS 2

p2

2P2D , ~35!
2-6
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FIG. 1. Generic properties of the one-dimensional Zajc model.~a! The HBT radius~33! from the ‘‘classical’’ algorithm as a function o
the strengths of the position-momentum correlations in the source. Different curves correspond to different combinations of the
parametersR0 and P0 and to different bin sizese. ~b! s dependence of the HBT radius parameter~37! for the ‘‘quantum’’ algorithm.
Different curves are for different combinations of model parametersR0 and P0 and different wave packet widthss. ~c! and ~d! The
two-particle correlator in the ‘‘classical’’ and ‘‘quantum’’ versions of the algorithm, for different sets of model parameters. The num
results were obtained by analyzing 50 events of multiplicity 1000, i.e.Npairs52.53107. They show small deviations for the ‘‘classical
version, but coincide within the linewidths for the ‘‘quantum’’ version.
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C~q,K!511exp$2q2Rqm
2 %, ~36!

Rqm
2 5R2S 12

1

~2RP!2D , ~37!

R25Rs
21

s2

2
, P25P0

21
1

2s2 . ~38!

In this case,R and P satisfy 2RP>1 independent of the
value of s, and the radius parameterRqm

2 is now always
positive. Even if the classical distributionrclass(x,p) violates
the uncertainty relation, its folding with minimum
uncertainty wavepackets leads to a quantum-mechanic
allowed emission functionS(x,p) and to a correlator with a
realistic falloff with q2. The limiting cases are also as e
pected: ForR0→` the source extends to spatial infinity an
the correlator collapses to a Kroneckerd function atuqu50.
For P0→`, the source is momentum independent, and
HBT radius measures a combination of the geometric ex
sion of rclass and the spatial wavepacket widths: Rqm

2 5Rs
2

1s2/2. Fors50, one recovers the expressions given in@30#.
The folding with wavepackets modifies the geometric size
the source by adding in quadrature the intrinsic width of
wavepacket,Rintr

2 5s2/2, and the size of the classical distr
05400
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butionrclass. The extra term is exactly reflected by the pre

actore2s2q2/2 by which Eq.~22! differs in structure from the
classical result~22!.

However, the spread of the one-particle momentum sp
trum ~35! receives an additional contribution 1/2s2. Choos-
ing s too small increases this term beyond phenomenolo
cally reasonable values, while choosing it too large wide
the corresponding HBT radius parameters significantly. T
restricts the range of phenomenologically acceptables val-
ues for the ‘‘quantum’’ version of the Bose-Einstein alg
rithm.

B. Event generator studies

To test the algorithm, we have mimicked the role of
event generator by creating a Monte Carlo phase-space
tribution of N phase-space points$(r i ,pi ,t i)u i 51, . . . ,N%
according to the distributionrclass

Zajc in Eq. ~27!. This Gaussian
model distribution allows one to compare the numerical
sults of the Bose-Einstein algorithms to the analytical e
pressions obtained above, thus testing statistical requ
ments, the accuracy of the numerical prescriptions, and
role of the bin width in the ‘‘classical’’ algorithm. Its generi
properties in both the ‘‘classical’’ and ‘‘quantum’’ version
can be read off from Fig. 1.
2-7
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FIG. 2. The average statistica
deviationsDstat(Nevt) of the ‘‘clas-
sical’’ and ‘‘quantum’’ Bose-
Einstein algorithms as a function
of the number of events in the
sample. Here, the event multiplic
ity is Nm5100, and only the total
number of pairs per event samp
is statistically relevant.
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The HBT radius parameter~33! of the ‘‘classical’’ pre-
scription, depicted in Fig. 1a, strongly depends on
position-momentum correlation in the source. Belowscrit , it
is positive, which corresponds to a quantum-mechanic
allowed Wigner function. Abovescrit , Rclass

2 turns negative;
i.e.,Rclassis imaginary. The value ofscrit depends on the tota
source size 2R0P0 in phase space. In Fig. 1a we exploite
this by varyingP0 between 80 and 200 MeV, keepingR0
51 fm fixed. In the plot one sees again that the HBT rad
parameter takes unphysical imaginary values as soon a
phase-space volume (2RsP0)3 becomes smaller than 1.

As explained in Sec. II C 1 above, the ‘‘classical’’ Bos
Einstein algorithm requires a smearing of the momentu
spaced functions in Eq.~13! by bin function~17! or ~18! of
width e. The physical situation is recovered in the limite
→0, but a careful investigation of this limit is numerical
difficult. However, for the Gaussian bin functions~18! the
HBT radius parameter can be obtained analytically for fin
bin width e:

Rclass
2 ~e!5

Rs
2

11e2/~2P0
2!S 11

e2

2P0
2~12s2!

2
1

~2RsP0!2D .

~39!

Comparison with Eq.~33! shows that the numerical resul
should be close to the physical ones if one chooses

e!A2P0 . ~40!

This provides the useful information that in practice the sc
for e is set by the widthP0 of the generated momentum
distribution, independent of the geometric source sizeRs .

In Fig. 1a we have also plotted thee dependence of the
HBT radius parameter. Clearly, for fixed bin width the a
proximation of the true HBT radius parameter~33! becomes
better with increasingP0, as suggested by Eq.~39!. More
generally, the net effect of a finite bin width is always
increase the apparent size of the source.

In Fig. 1b we show the HBT radius obtained from th
‘‘quantum’’ version of the algorithm. Now the situation i
qualitatively different: the HBT radius is always positiv
since the smearing with Gaussian wavepackets always
sures consistency with the uncertainty relation, and itss de-
pendence is much weaker since the wavepackets smea
the unphysically strong position-momentum correlations
rclass

Zajc . The different curves shown in Fig. 1b illustrate, f
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fixed classical source radiusR0, the dependence of the HBT
radius parameter on the widthP0 of the classical momentum
distribution and on the wavepacket widths. Wavepacket
widthss.R0 not only change the HBT radius itself, but als
its dependence onP0 significantly.

In Figs. 1c, 1d we present for characteristic model para
eters the corresponding two-particle correlation functio
The analytical curves~32! and~36! are compared to numeri
cal results from the algorithms~21! and ~23! applied to a
Monte Carlo distribution of phase-space points$(r i ,pi ,t i)u i
51, . . . ,N% obtained from the distributionrclass

Zajc in Eq. ~27!.
The plot shown usedNevt550 events of multiplicityNm

51000. We emphasize that only the total number of pairs
the event sample,12 NevtNm(Nm21), is statistically relevant.
Our choice ofNevt andNm hence illustrates the properties o
the algorithms for both high and low multiplicity events.

For the ‘‘quantum’’ algorithm, the numerically simulate
correlator in Fig. 1d coincides with the analytically calc
lated one~36! within the linewidth. Small differences be
tween the analytic and numerical results are seen for
‘‘classical’’ algorithm in Fig. 1c. In order to understand the
differences in the performance of the two algorithms qua
tatively, we have studied their statistical requirements in
following way: from the distributionrclass

Zajc we generated a se
of Nfit55000 samples ofNevt events, each event containin
Nm5100 particles. For each of the 5000 event samples,
calculated the two-particle correlator with both algorithm
and determined the HBT radiusRfit from a Gaussian fit to
this correlator. The statistical deviations from the analy
cally known exact resultsRclass(e) and Rqm, respectively,
were then determined as a function of the sample sizeNevt
via

Dstat~Nevt!5
1

Nfit
(
n51

Nfit

@Rfit~n!2Rexact#
2. ~41!

In general, increasing the event multiplicityNm or the num-
ber of events,Nevt, improves the performance of the algo
rithms. Here we focus on the typical situation that the av
age event multiplicityNm is fixed by the simulated physics
while the number of events in the event sample can be
creased by a longer running time of the~numerical! experi-
2-8
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FIG. 3. Schematics of the twoe1e2 event types~42! and~43!: The final-state hadron distribution inZ0 events~left! is due to exclusively

‘‘endogamous’’ hadronization of the partonic offspring from theqq̄ dijet, whereas inW1W2 events~right! there is, in addition, the

possibility of ‘‘exogamous’’ hadron production involving a mating of partons from the two differentW1→qq̄8 andW2→q8q̄ dijets.
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ment. The corresponding statistical performance of both
gorithms, measured in terms ofDstat(Nevt), is plotted in Fig.
2.

For the ‘‘quantum’’ algorithm, the statistical fluctuation
decrease likeDstat(Nevt);1/Nevt. Also, their absolute value
is small: for only Nevt510 events, the fluctuations in th
fitted valuesRfit are already smaller than 0.1%. This is t
reason why in Fig. 1d for the ‘‘quantum’’ algorithm th
simulated values coincide so well with the analytical on
We also observe thatDstat(Nevt) increases for larger values o
s. The reason is thatDstat(Nevt)}Rexact

2 , which increases sig
nificantly with increasings ~see Fig 1b!. The normalized
fluctuation measureDstat(Nevt)/Rexact

2 decreases slightly with
increasings, since the finite wavepacket width smears o
the discrete classical emission function~13! and thereby re-
duces the statistical fluctuations in the algorithm.

In comparison, the ‘‘classical’’ algorithm shows statistic
fluctuations which are approximately two orders of mag
tude larger. One sees clearly howDstat(Nevt) increases—i.e.,
the statistical requirements increase—if one goes to sm
bin widths e, as needed to realize the physical limite→0.
Also, at least for small values ofNevt,100, the fluctuations
Dstat(Nevt) decrease more slowly than 1/Nevt. There are sev-
eral reasons for these differences between the ‘‘classic
and ‘‘quantum’’ algorithms. Numerically, we observe tha
in the ‘‘classical’’ algorithm, the simulated correlator~21!
has even for the present Gaussian model a tendency to
come non-Gaussian. This is seen, e.g., in the slight de
tions in Fig. 1c fors50.2. These non-Gaussian effects d
pend onNevt and manifest themselves in the slight wiggle
Fig. 2 in the curve corresponding toe540 MeV, which is a
relatively large bin width. Second, we observe that it is
inclusion of the Gaussian prefactor exp(2s2q2/2) in Eq.~23!
which decreases the statistical fluctuations dramatically
small bin widthe, which corresponds to a large value ofs,
leads to large fluctuations of Eq.~21!, but in the ‘‘quantum’’
algorithm the Gaussian prefactor exp(2s2q2/2) switches on
just in the regime of ‘‘small bin width’’ and thereby damp
ens out the fluctuations.

IV. TWO-PARTICLE BOSE-EINSTEIN CORRELATIONS
IN A PARTON-SHOWER MONTE CARLO

CALCULATION

Having gained some insight into the simulation of Bos
Einstein effects within the toy model of the previous sectio
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we now apply the algorithm to the realistic case of parti
emission ine1e2 annihilation at LEP 1@47# and LEP 2@48#.
We focus on the following reaction channels, illustrated
Fig. 3:

e1e2→Z0→qq̄→hadrons atAs591.5 GeV, ~42!

e1e2→W1W2→qq̄8q8q̄→hadrons atAs5183 GeV.
~43!

These two processes are of interest for several reaso
~i! Generally,e1e2 collisions atA(s)>90 GeV provide

the ‘‘cleanest’’ environment of all high-energy particle co
lisions for studying the physics of Bose-Einstein corre
tions, because there is no background to the interesting
ticles emitted from the calculable parton shower, and fin
state hadrons escape unscathed from their emission p
without further interactions. Correlation measurements
therefore be very valuable, as they may be used to calib
analogous analyses in the extreme opposite case of he
ion collisions, where the emission region is more difficult
calculate accurately, and final-state hadron scattering
cascading can crucially influence the shape of the part
distributions.

~ii ! The experimental study ofe1e2→Z0→hadrons at
LEP 1 is based on several 106 events, and hence is impres
sively extensive and accurate. In particular, high-precis
measurements of two- and three-particle correlations h
been reported@14#. On the other hand, the reactione1e2

→W1W2→hadrons is currently under very active study
LEP 2, in both its experimental and theoretical aspects:
an overview, see@48#. The interest in this reaction stem
from its importance for measuring the triple-gauge-bos
couplings andmW . In particular, it has been argued th
Bose-Einstein correlations may introduce an import
source of systematic error into the analysis ofmW .

Theoretical studies of Bose-Einstein enhancements h
mainly been within the context of the string models@1#,
which have been very successful in explaining the distri
tions of identical particles seen in high-energye1e2 colli-
sions@11#. Although the string description@1# of the hadroni-
zation process is a very appealing phenomenolog
approach and also has many other successes, it is no
only possible description. We employ a rather distinct clus
hadronization model, based on a space-time descriptio
2-9
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the perturbative development of parton showers, combi
with a non-perturbative model for cluster formation and ha
ronization@2#.

The crucial physics point is that, whatever model one u
for the details of the conversion of colored partons in
color-neutral hadronic states, the Bose-Einstein correlat
measured ine1e2 experiments are sensitive tolocal vol-
umes of the order of a fermi in both the longitudinal a
transverse directions. Therefore they provide important
formation on the intimate space-time structure of the h
ronization mechanism. In particular, the sources that emit
final-state pions and other particles must be identified w
local hadronization ‘‘patches,’’ and not with the system a
whole, which may extend over even hundreds of fermi.
the string picture, these local patches are the centers of s
fragments, whereas in our cluster description the patches
elementary color-neutral clusters formed from the mating
nearest-neighbor partons. The effective Bose-Einstein co
lation length should correpond to the sizes of these patc
namely the typical string extension.1 fm or the mean clus-
ter size.0.8 fm. Loosely speaking, this correlation leng
defines the minimum possible distance that one may res
from the particle distributions of the hadronic final state. B
fore turning to our model-specific analysis of the Bos
Einstein effect ine1e2 collisions, we refer the intereste
reader to the comprehensive overview@49#, in which the
status of related experimental and theoretical researc
e1e2 physics can be found.

A. Modeling the space-time development ofe1e2 collisions

In order to analyze the effects of identical-particle cor
lations ine1e2 collisions using the quantum version of th
Bose-Einstein algorithm, we need to concentrate on ev
generators that deliver realistic, though classical, phase-s
distributions of final-state hadrons, to which we may th
apply the algorithm simulation of quantum interference a
the Bose-Einstein effect. It is clear from the preceding s
tions that such an event generator must not only give
momentum spectra, but also the vital space-time informa
on the dynamical evolution and in particular on the fin
stage of hadron emission. Unfortunately, most of the
vanced event generators in particle physics@50# do not en-
code the relevant particle emission structure in space
time, whereas most event genarators for heavy-ion collisi
do, but cannot be applied toe1e2 physics. One event gen
erator that does satisfy both these requirements isVNI @18#,
which simulates thee1e2 collision dynamics all the way
from the hard annihilation vertex, through the perturbat
QCD shower development to the emergence of hadronic
nal states. Within the framework of relativistic quantum k
netics@51#, the event generation inVNI traces in both space
time and momentum space the parton-shower evolution f
the initial quark-antiquark pairs, followed by the clusterin
of the emitted quark and gluon offspring to pre-hadro
cluster states that then decay into the final-state hadrons
ferring to @9,18# for details, we recall briefly here the esse
tial concepts of this space-time model:

~i! The parton-shower dynamicsis described by conven
tional perturbative QCD evolution Monte Carlo method
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with the added feature that we keep track of the spatial
velopment in a series of small time increments. Our pro
dure implements perturbative QCD transport theory in
manner consistent with the appropriate quantum-mechan
uncertainty principle, incorporating parton branching due
real and virtual quantum corrections involving gluons
quark-antiquark pairs. In the rest frame of theZ0 @for Eq.
~42!# or of theW6 @for Eq. ~43!#, each off-shell partoni in
the shower propagates for a timeDt i given in the mean by
^Dt i&5g it i5Ei /ki

25xiM /2ki
2 , where ki

2 is the parton’s
squared-momentum virtuality, andxi5Ei /M is its longitu-
dinal energy fraction, during which it travels a distanceDr i
5Dt ib i , whereM5MZ0 for Eq. ~42! and M5MW for Eq.
~43!. It has been shown@9# that such a description results i
a typical inside-outside perturbative cascade@52#.

~ii ! The parton-hadron conversionis handled using a
strictly spatial criterion for confinement, with a simple an
satz for the probabilityP(r ) that nearest-neighbor colo
charges coalesce to color-neutral clusters in accord with t
color and flavor degrees of freedom, wherer is the relative
distance in between them in their center-of-mass frame.
nearest-neighbor criterion is imposed at each time step in
shower development, in such a way that every parton tha
further from its neighbors than a certain critical distanceRc
50.8 fm has a probability distribution smeared aroundRc
for combining with its nearest-neighbor parton to form
pre-hadronic cluster, possibly accompanied by one or m
partons to take correct account of the color flow. It is impo
tant to stress that at no moment in this shower developm
do we incorporate any prejudice regarding the genealog
origin of the partons: an ‘‘exogamous’’@10# pair of partons
from different motherqq̄8 pairs have the same probability o
coalescing into a hadronic cluster as do an ‘‘endogamo
pair of partons from the same mother, at the same spa
separation. The resulting hadronic clusters are then allo
to decay into stable hadrons according to the particle d
tables.

In the present paper, as a result of the less deman
requirements on event statistics, we will use the ‘‘quantum
version of the Bose-Einstein algorithm. This requires fixi
the wavepacket widths in the algorithm. Lacking convinc-
ing arguments for a unique physical choice of this parame
we try to connect it with the intrinsic sizeRc of the pre-
hadronic clusters which act as pion-emitting sources. T
sizeRc also defines the minimum distance of adjacent cl
ters at formation without overlapping. We thus set

Rc50.8 fm5s. ~44!

Finally, we stress that, although the event generation
e1e2 collisions along the above lines should provide
rather realistic simulation of the particle dynamics, we do n
claim our results to be more than qualitative at this poi
mainly since we have not included final-state interactio
among the produced hadrons due to either Coulomb
strong interactions. In our approximation, the production v
tex of each final-state hadron marks the last point of inter
tion, beyond which the particles stream freely on classi
trajectories. Since in ‘‘real-life’’ experiments these final-sta
2-10
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interactions can become large at small relative momenta,
should be careful when comparing to measured data, som
which have been corrected for final-state interactions, oth
not.

B. Results for two-pion correlations

1. Multiplicity distributions

It is plausible that the structure of the hadronic final st
in e1e2→W1W2→qq̄8q8q̄ may not merely be a copy o
W6→qq̄8 with twice the final-state multiplicity. As dis-
cussed in detail in@10,9#, it was found within our space-time
parton-shower model that not only the total multiplici
N(W1W2) may be smaller than 23N(W6), but also that
the particle spectra may exhibit characteristic differenc
These differences are due to the special geometry ofW1W2

events, in which the partonic offspring of theW1 dijet over-
lap in space-time with the partons emitted from theW2 dijet.
The cross-talk between the quanta from theW6 is especially
prominent at small rapidities and if the two dijets emerge
small relative angles. Then, whereas ine1e2→Z0 decays all
particles come from the same mother and only ‘‘endo
mous’’ cluster formation is possible, as in the left part of F
3, W1W2 events receive a significant contribution from t
coalescence of partons from differentW6 mothers into ‘‘ex-
ogamous’’ clusters, as in the right part of Fig. 3.

Figure 4 reflects the effects of parton ‘‘exogamy’’
e1e2→W1W2→qq̄8q8q̄ as compared toZ0→qq̄, in the
multiplicity distributions of both single pions~top! and of
pairs of identical pions~bottom!. Even allowing for the
slightly larger mass of theZ0 compared to theW6, one

FIG. 4. Multiplicity distributions of single pions~top! and of
pairs of identical pions~bottom!, per charged pion species.
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observes, in agreement with the above discussion, an e
tive reduction Np6(W1W2),23Np6(Z0), namely,
^Np6(Z0)&56.1 versuŝ Np6(W1W2)&59.5, per pion spe-
cies. Similarly, we find for the number of identical-pion pai
Np6p65Np6(Np621) that Np6p6(W1W2),4
3Np6p6(Z0), namely, ^Np6p6(Z0)&581.9 versus
^Np6p6(W1W2)&5207.3.

The effect may be thought of as reflecting increased ‘‘
ficiency’’ in the hadronization process, due to the fact th
the presence of two cross-talking dijets in theW1W2 de-
cays, with their spatially overlapping offspring, allows th
evolving particle system to reorganize itself more favora
in the cluster-hadronization process and to form clusters w
smaller invariant mass than in theZ0 events. Indeed, it was
found in @10# that the mass spectrum of pre-hadronic clust
from coalescing partons is in fact softer in theW1W2 case,
reflecting the fact that the availability of more partons e
ables clusters to form from configurations with lower inva
ant mass than in theZ0 case.

2. Origins of pions

In theory, all pairs of identical pions can exhibit Bos
Einstein correlations. Experimentally, however, the measu
ments of the pair spectrum in the relative pair momentumq
run out of statistics because the phase space vanishes a
low q. Since smallq values correspond to large spatial di
tances, this region ofq is particularly sensitive to the decay
into pions of long-living resonances, and also to long-ran
Coulomb or strong final-state interactions among the p
ticles. Whereas final-state interaction effects can be c
rected, this is not easy for resonance decays. Since man
the pions ine1e2 collisions have their origins in the decay
of other particles with lifetimes significantly greater than
few fermis, it is useful to disentangle the various experime
tal sources of pions~or other particles! and to classify their
parents as follows@49,53,54#:

~i! Prompt productionleading to pions that emerge d
rectly from the hadronization of the fragmenting syste
whose parents may be visualized as decaying strings o~in
our case! as pre-hadronic clusters.

~ii ! Short-lived particlessuch asr, K* and D that are
strongly decaying particles with decay lengths shorter tha
few fermis.

~iii ! Long-lived resonancessuch ash,h8,v,f that are
states which also decay strongly but have life-times of ma
fermis.

~iv! ‘‘Stable’’ particles such asL and Ks
0 that are par-

ticles which propagate sufficiently far that the pions eme
ing can be removed by track cuts.

~v! Weakly decaying particlessuch as charm or bottom
mesons.

In Table I, we list the fractions of pions coming from
these different sources, as estimated in our model sim
tions. Since the ‘‘stable’’ particles can be considered as
having decayed, and weakly decaying particles contrib
only a negligible fraction, we do not include these two c
egories in the list. We observe that the numbers in Tab
are very similar to those reported in@49#.
2-11
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3. The pion correlator C(q,K) for K50

Figure 5 shows the correlatorC(q,K)21 for different q
values and vanishing pair momentumK in the c.m. frame of
the collision,C(qz ,qs ,qo ,0)21. Two interesting observa
tions can be made immediately:

~a! In both cases,e1e2→Z0→qq̄→p8s and e1e2

→W1W2→qq̄8q8q̄→p8s, we seeno significant differ-
ences between the three relative momentum direct
qz ,qs ,qo . Although, for a fixed directionqi , the intercept of
the correlator atqi50 depends on the magnitude of the m
mentum transverse toqi , it looks the same forqi5qz , qi
5qs or qi5qo .

~b! The correlation function in the casee1e2→W1W2

→qq̄8q8q̄→p8s is slightly narrower than that ofe1e2

→Z0→qq̄→p8s. Since the meanq values correspond to th
inverses of the typical emission source sizes, this means
the hadronicW1W2 decays reflect a larger source si
~.1 fm! than theZ0 decays (.0.8 fm), as we discuss late
in the context of resonance effects.

The implication of observation~a! is that the pion emis-
sion appears essentially spherically symmetric with resp

TABLE I. Relative contributions of different sources of pions
our e1e2 event simulations.

Origin Lifetime t Fraction

Clusters ,0.5 fm 0.31
r,D,K* 1.3–4 fm 0.41
h,h8,v,f .10 fm 0.28
05400
s

at

ct

to the three orthogonal directionsqz ,qs ,qo . This may ap-
pear to conflict with the naive expectation that the sou
should appear much more elongated in the longitudinaz
direction than in the sideward and outwards,o directions,
because of the large longitudinal momenta of the lead
quark jets. However, as we pointed out before, in this mo
the pre-hadronic cluster formation is controlled by t
‘‘nearest-neighbor’’ criterion, so that only spatially adjace
partons with a mean separationRc;0.8 fm have a significant
probability of coalescing and decaying into pions and ot
hadrons. This local coalescence results naturally in
longitudinal-momentum ordering of particles as a function
their distance from the jet origin: particles farther away te
to have higher momentum than those in the center. Since
Bose-Einstein effect is only apparent for identical partic
with similar momenta, corresponding to smallq, particles
that are separated by many fermi at production are incap
of showing a significant enhancement because their mom
are so different.

One may conclude from observation~b! that parton ‘‘ex-
ogamy’’ in W1W2 decays@10# results in a space-time dis
tribution of hadrons that is more spread out than in the c
of Z0 decays. This may again be understood as a con
quence of increased efficiency of hadron formation in
W1W2 events, as we discussed before in the context of
pion multiplicity distributions in Fig. 4. The identical pion
emerging as products of parton-cluster decays have a lo
distance correlation inW1W2 events, because the parton
offspring of the overlappingqq̄ dijets are enhanced mainl
for low-momentum quanta in the central rapidity region, co
responding to significant ‘‘exogamous’’ coalescence of p
-

FIG. 5. The correlation func-
tion of same-sign pions for differ-
ent values of the relative pair mo
mentum q for vanishing pair
momentum K, C(qz ,qs ,qo ,0)
21.
2-12
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FIG. 6. The correlation func-
tion of same-sign pionsC(q,K)
21 for various values of the pai
momentum K5(KL ,K'), where
KL5Kz is the direction along the
thrust axis and K'5uK'u
5AKx

21Ky
2 is the momentum

transverse to it. The correlator
are plotted against one compone
of the relative momentum, setting
the two other components to zero
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tons from differentW’s with small relative momenta. As a
consequence, the pion pair spectrum fromW1W2 decays in
Fig. 5b is narrower than the one fromZ0 decays in Fig. 5a,
which translates into a larger effective emission radius
these pions.

4. Pion correlator C(q,K) for KÅ0

The general features and physics interpretation of thK
dependence of the correlation functionC(q,K) have been
studied in detail in@26,28,54#. A manifest change in the
shape ofC(q,K) as K varies can have several origins, th
two most important being~i! resonance decay contribution
@54,55# and ~ii ! collective flow of the particle matter@26#.
Whereas pions from long-lived resonances are alw
present in high-energy collisions, collective motion of t
produced particles is a feature of heavy-ion reactions
produce high-density matter, but certainly is not an issue
thee1e2 collisions discussed here. In this subsection we
not distinguish the contributions from resonance decays,
show theK dependence of the correlation function includi
pions from long-lived resonances, just as in the previous
ures. We disentangle the effect of resonance decays in
next subsection.

Figure 6 shows the correlation functionC(q,K)21 of
same-sign pions for various values of the pair moment
K5(KL ,K'), whereKL5Kz is the direction along the thrus
axis andK'5uK'u5AKx

21Ky
2 the momentum transverse t

it. The correlator is plotted as a function of one of the thr
Cartesian components of the relative momentumq, with the
other two components set to zero. The two main features
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~a! The shape of the correlation function flattens and w
ens asKL or K' are increased. However, the meanqL,'
change by less than 10% when theKL,T values are varied
from 0 to 1 GeV.

~b! TheK dependence is evidently spherically symmetr
i.e., the correlation function changes in the same way asKL
or K' is increased in the range from 0 to 1 GeV.

Point ~a! is a reflection of resonance-decay pions: lon
lived resonances witht.10 fm can travel for many fermis
before decaying, which leads to an exponential tail in
pion pair spectrum@54#. This ‘‘lifetime effect’’ is larger for
small values ofK and damps out asK is increased, since the
relative abundance of resonances is most pronounce
small K.

Point ~b!, on the other hand, is in accordance with the fa
that the kinematics is approximately boost invariant alo
the thrust axis of thee1e2 collision and the ‘‘local’’ char-
acter of the particle dynamics in our model. Neither the p
ton shower evolution nor the parton-cluster hadronization
pends on the overall momentumK relative to thee1e2

center-of-mass frame, as it is only the kinematics, color a
flavor of the nearby clustering partons which at any giv
vertex determines locally the development of particle p
duction.

5. Effects of resonance decays on C(q,K)

Consider now a pair of identical pions with relative m
mentumq, where one of the pions originates from a res
nance of momentump with massmr and decay widthG r

;t r
21 . Such a pair cannot contribute to the Bose-Einst
2-13
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FIG. 7. The correlator
C(q,K)21 for K50 with ~solid
curves! and without~dashed lines!
the contributions from long-lived
resonances.
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effect if uq•pu@mrG r , which roughly implies thatuqu@t r
21 .

Sinceq is inversely proportional to the spatial dimension
the pion source, this means that resonances represe
source of spatial extent of the order oft r

21 . Hence, such
pions only can exhibit correlations ifuqu<O(t r

21), which for
long-living resonances (t r>10 fm) requiresuqu<20 MeV.
This is less than the scale at which direct pions coming fr
the pre-hadronic clusters contribute, as seen in Tabl
Therefore the pion correlation functionC(q,K) is narrowed
by the effects of the pion decay products of long-living res
nances.

To quantify the resonance narrowing and localize
pileup of pion pairs where at least one comes from resona
decay, we have disentangled the pion emission sou
of Table I within our event simulation. In Fig. 7 we sho
again the correlatorC(q,K)21 for K50 in the two
cases ofe1e2→W1W2→qq̄8q8q̄→p ’s and e1e2→Z0

→qq̄→p ’s. The solid lines correspond to the correlator w
all sources included, as in the previous Fig. 6, whereas
dashed curves have the long-living resonance decay co
butions removed. One sees that the resonance decay
make a significant 20–30 % contribution to the magnitude
C21 at qL ,qT&50 MeV, corresponding to lifetimes
.5 fm. Figure 8 exhibits theK dependence of the effectiv
emission radii associated with the mean values of the c
ponents ofq5(qL ,qs ,qo) in the longitudinal (RL) and trans-
verse (Ro ,Rs) directions with respect to the thrust axis@54#:

Ri
2~K!5

1

2^qi
2&

, ^qi
2& 5

E dqiqi
2@C~qi ,K!21#

E dqi@C~qi ,K!21#

.

~45!

Again, the solid lines include all the sources in Table
whereas the dashed lines exclude the long-living resonan
It is evident that the effect of resonances is most pronoun
for small values ofK and disappears with increasingK. This
is expected as the abundance of pions from resonance de
05400
t a
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is most prominent at smallK. Resonance decays thus indu
a pair-momentum dependence of the HBT radii@54,55#, with
overall variations of the radii on the order of 0.1 fm.

It is interesting to note that after switching off the res
nance decay contributions the HBT radii shown in Fig.
exhibit no remaining pair-momentum dependence. Suc
pair-momentum dependence would signal the presenc
position-momentum correlations in the source as, e.g.,
duced by collective flow or string breaking kinematics. N
such correlations are visible here, not even along the th
axis ~see the left panels of Fig. 8 which showRL as a func-
tion of K'). This is surprising because the inside-outsi
cascade features of parton and hadron production inVNI

should lead to appreciable position-momentum correlati
along the longitudinal axis defined by the primary hard p
tons. We can think of two possible reasons for the fact t
they are not reflected in the longitudinal HBT radii show
here: either they get largely averaged out by summing o
many collision events~which we think is unlikely!, or they
get covered up by the finite size of the wavepacket widths
in the Bose-Einstein algorithm. The fact that all HBT rad
come out very close tos50.8 fm lends support to the sec
ond conjecture, although a final clarification of this issue h
to await a comparison with calculations based on the ‘‘cl
sical’’ version of the algorithm, as well as studies of th
‘‘quantum’’ version with different values ofs.

V. DISCUSSION

We have discussed in this paper two possible algorith
for modeling Bose-Einstein correlations in a Monte Ca
code for e1e2 annihilation into hadrons that incorporate
information from perturbative QCD on the space-time ev
lution of parton showers and a configuration-space criter
for hadronization. Algorithms incorporating both the ‘‘cla
sical’’ and ‘‘quantum’’ algorithms have been applied to
model in which the hadron emission region is known an
lytically. Standard tools for analyzing the sizes of hadr
emission regions have been applied to these model calc
tions, and shown to reproduce successfully the paramete
2-14
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FIG. 8. TheK dependence of the effective pion source radii associated with the mean values of the components ofq5(qL ,qs ,qo) in the
longitudinal (RL) and transverse (Ro ,Rs) directions with respect to the thrust axis. The solid lines include all sources, whereas the d
curves exclude long-lived resonances.
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the model. The quantum algorithm has then been imp
mented as an algorithm in the space-time parton-sho
Monte Carlo, and applied toe1e2→Z0→hadrons and
e1e2→W1W2→hadrons. Exploratory analyses have be
presented of two-pion correlations in longitudinal and tra
verse momenta, both with and without resonance dec
The latter have been shown to modify significantly t
Gaussian behavior that would otherwise have been expe
and to cause a pair-momentum dependence of the extra
HBT radii, albeit on a small scale of order 0.1 fm only. In th
limit studied here where the ‘‘quantum’’ algorithm was us
with a fixed wavepacket widths50.8 fm, resonance decay
in fact induced theonly discernibleK' dependence of the
HBT radii.
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The analysis of this paper has necessarily been inc
plete, and we conclude by listing some of the open questi
that could be addressed in any future work. It would be
teresting to implement the ‘‘classical’’ algorithm as an alg
rithm, and investigate the similarities and differences w
the quantum algorithm explored in this paper. We are no
a position to express a definitive theoretical preference
one algorithm over the other. Within the context of the qua
tum algorithm, we have assumed one particular value of
Gaussian wavepacket sizes, and have not explored the im
plications of varying this parameter. In this connection,
should draw the reader’s attention to the possibility that
similarities between the correlations in the transverse
2-15
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longitudinal momenta may be related to the choice ofs,
which we have not attempted to optimize. This would
volve an overall tuning of the Monte Carlo program to
particle spectra, which we are currently not in a position
complete.1 Once this is done, one could use the Monte Ca
program to address some of the physics issues that trigg
this investigation, including the possible effects of Bos
Einstein correlations on measurements of theW6 mass in
hadronic final states at LEP 2.

Despite the inevitable incompleteness of this work,
hope that the ideas and investigations reported here ma
useful in future studies along the lines suggested above
ther within the context of the space-time approach toe1e2

annihilation into hadrons used here, or within some ot
approach. The Bose-Einstein algorithms studied here co
also be implemented in Monte Carlo codes for other inter
tions, including relativistic heavy-ion collisions. We are cu
rently studying how this work could be advanced along th
lines.

Note added. After submission of this manuscript, Bas
and Müller @56# recently pointed out thatVNI uses a ques
tionable parametrization of theK factor. In nucleus-nucleus

1For this reason, it is not possible currently to use this Mo
Carlo program to make a quantitative estimate of the system
uncertainties in theW6 mass determination at LEP 2 due to col
reconnection or parton exogamy.
.
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collisions at the CERN Super Proton Synchrotron~SPS! and
the BNL Relativistic Heavy Ion Collider~RHIC! energies a
more realistic parametrization changes certain global obs
ables by up to 30%. Although we work at much higher c
lision energies where these problems should be less rele
@56#, we cannot exclude the possibility that this would al
lead to significant quantitative changes of our results.
were further informed@57# that VNI fails to reproduce some
measured global features ofe1e2 collision events, and tha
these problems may be related to the cluster formation a
rithm used inVNI. We should therefore warn the reader on
more that our results are not intended and should not
misinterpreted as quantitative predictions. Improved ev
generators which, likeVNI, provide full phase-space informa
tion for e1e2 collision events are presently being develop
and will eventually become publicly available. Together w
the Bose-Einstein algorithms presented here they can be
for more quantitative predictions than we were able to g
erate.
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