3,821 research outputs found

    Analysis of lower limb internal kinetics and electromyography in elite race walking.

    Get PDF
    The aim of this study was to analyse lower limb joint moments, powers and electromyography patterns in elite race walking. Twenty international male and female race walkers performed at their competitive pace in a laboratory setting. The collection of ground reaction forces (1000 Hz) was synchronised with two-dimensional high-speed videography (100 Hz) and electromyography of seven lower limb muscles (1000 Hz). As well as measuring key performance variables such as speed and stride length, normalised joint moments and powers were calculated. The rule in race walking which requires the knee to be extended from initial contact to midstance effectively made the knee redundant during stance with regard to energy generation. Instead, the leg functioned as a rigid lever which affected the role of the hip and ankle joints. The main contributors to energy generation were the hip extensors during late swing and early stance, and the ankle plantarflexors during late stance. The restricted functioning of the knee during stance meant that the importance of the swing leg in contributing to forward momentum was increased. The knee flexors underwent a phase of great energy absorption during the swing phase and this could increase the risk of injury to the hamstring muscles

    System data communication structures for active-control transport aircraft, volume 2

    Get PDF
    The application of communication structures to advanced transport aircraft are addressed. First, a set of avionic functional requirements is established, and a baseline set of avionics equipment is defined that will meet the requirements. Three alternative configurations for this equipment are then identified that represent the evolution toward more dispersed systems. Candidate communication structures are proposed for each system configuration, and these are compared using trade off analyses; these analyses emphasize reliability but also address complexity. Multiplex buses are recognized as the likely near term choice with mesh networks being desirable for advanced, highly dispersed systems

    System data communication structures for active-control transport aircraft, volume 1

    Get PDF
    Candidate data communication techniques are identified, including dedicated links, local buses, broadcast buses, multiplex buses, and mesh networks. The design methodology for mesh networks is then discussed, including network topology and node architecture. Several concepts of power distribution are reviewed, including current limiting and mesh networks for power. The technology issues of packaging, transmission media, and lightning are addressed, and, finally, the analysis tools developed to aid in the communication design process are described. There are special tools to analyze the reliability and connectivity of networks and more general reliability analysis tools for all types of systems

    Master your Metrics with Calibration

    Full text link
    Machine learning models deployed in real-world applications are often evaluated with precision-based metrics such as F1-score or AUC-PR (Area Under the Curve of Precision Recall). Heavily dependent on the class prior, such metrics make it difficult to interpret the variation of a model's performance over different subpopulations/subperiods in a dataset. In this paper, we propose a way to calibrate the metrics so that they can be made invariant to the prior. We conduct a large number of experiments on balanced and imbalanced data to assess the behavior of calibrated metrics and show that they improve interpretability and provide a better control over what is really measured. We describe specific real-world use-cases where calibration is beneficial such as, for instance, model monitoring in production, reporting, or fairness evaluation.Comment: Presented at IDA202

    The Impact of Exercise Consultation on Activity Levels and Metabolic Markers in Obese Adolescents: A Pilot Study

    Get PDF
    Objective. To assess the impact of exercise consultation on physical activity (PA) levels, anthropometric measures, and metabolic markers in obese adolescents. Methods. Obese adolescents (14–18 years) were randomized to either an exercise consultation (intervention group) or to review “Canada's Physical Activity Guide for Youth” (control group). Outcomes, including accelerometry, anthropometrics, blood pressure, stage of exercise behavior change, fasting glucose, insulin, and lipids, were measured at baseline and 3 months later. Results. Thirty adolescents (mean BMI = 36.1 kg/m2; SD = 6.9) completed the study. At follow-up, the intervention group had significantly greater PA compared with controls (P < .05). Similarly, the intervention group weighed an average 2.6 kg less than the control group (P < .05), with a mean BMI z-score of 2.15 compared to 2.21 for controls (P = .054). No other differences were noted. Conclusion. Exercise consultation may be a simple approach to increase PA levels, reduce weight, and lower BMI in obese adolescents

    Cognitive demands of face monitoring: Evidence for visuospatial overload

    Get PDF
    Young children perform difficult communication tasks better face to face than when they cannot see one another (e.g., Doherty-Sneddon & Kent, 1996). However, in recent studies, it was found that children aged 6 and 10 years, describing abstract shapes, showed evidence of face-to-face interference rather than facilitation. For some communication tasks, access to visual signals (such as facial expression and eye gaze) may hinder rather than help children’s communication. In new research we have pursued this interference effect. Five studies are described with adults and 10- and 6-year-old participants. It was found that looking at a face interfered with children’s abilities to listen to descriptions of abstract shapes. Children also performed visuospatial memory tasks worse when they looked at someone’s face prior to responding than when they looked at a visuospatial pattern or at the floor. It was concluded that performance on certain tasks was hindered by monitoring another person’s face. It is suggested that processing of visual communication signals shares certain processing resources with the processing of other visuospatial information

    Kinematic characteristics of elite men's 50 km race walking.

    Get PDF
    Race walking is an endurance event which also requires great technical ability, particularly with respect to its two distinguishing rules. The 50 km race walk is the longest event in the athletics programme at the Olympic Games. The aims of this observational study were to identify the important kinematic variables in elite men's 50 km race walking, and to measure variation in those variables at different distances. Thirty men were analysed from video data recorded during a World Race Walking Cup competition. Video data were also recorded at four distances during the European Cup Race Walking and 12 men analysed from these data. Two camcorders (50 Hz) recorded at each race for 3D analysis. The results of this study showed that walking speed was associated with both step length (r=0.54,P=0.002) and cadence (r=0.58,P=0.001). While placing the foot further ahead of the body at heel strike was associated with greater step lengths (r=0.45,P=0.013), it was also negatively associated with cadence (r= -0.62,P<0.001). In the World Cup, knee angles ranged between 175 and 186° at initial contact and between 180 and 195° at midstance. During the European Cup, walking speed decreased significantly (F=9.35,P=0.002), mostly due to a decrease in step length between 38.5 and 48.5 km (t=8.59,P=0.014). From this study, it would appear that the key areas a 50 km race walker must develop and coordinate are step length and cadence, although it is also important to ensure legal walking technique is maintained with the onset of fatigue

    Muscle-tendon morphology and function following long-term exposure to repeated and strenuous mechanical loading

    Get PDF
    We mapped structural and functional characteristics of muscle‐tendon units in a population exposed to very long‐term routine overloading. Twenty‐eight military academy cadets (age = 21.00 ± 1.1 years; height = 176.1 ± 4.8 cm; mass = 73.8 ± 7.0 kg) exposed for over 24 months to repetitive overloading were profiled via ultrasonography with a senior subgroup of them (n = 11; age = 21.4 ± 1.0 years; height = 176.5 ± 4.8 cm; mass = 71.4 ± 6.6 kg) also tested while walking and marching on a treadmill. A group of eleven ethnicity‐ and age‐matched civilians (age = 21.6 ± 0.7 years; height = 176.8 ± 4.3 cm; mass = 74.6 ± 5.6 kg) was also profiled and tested. Cadets and civilians exhibited similar morphology (muscle and tendon thickness and cross‐sectional area, pennation angle, fascicle length) in 26 out of 29 sites including the Achilles tendon. However, patellar tendon thickness along the entire tendon was greater (P < .05) by a mean of 16% for the senior cadets compared with civilians. Dynamically, cadets showed significantly smaller ranges of fascicle length change and lower shortening velocity in medial gastrocnemius during walking (44.0% and 47.6%, P < .05‐.01) and marching (27.5% and 34.3%, P < .05‐.01) than civilians. Furthermore, cadets showed lower normalized soleus electrical activity during walking (22.7%, P < .05) and marching (27.0%, P < .05). Therefore, 24‐36 months of continuous overloading, primarily occurring under aerobic conditions, leads to more efficient neural and mechanical behavior in the triceps surae complex, without any major macroscopic alterations in key anatomical structures

    Kinematic and temporal differences between World-class men’s and women’s hurdling techniques

    Get PDF
    This study aimed to compare joint kinematics and center of mass parameters throughout hurdle clearance between world-class men and women sprint hurdlers, who were competing in a World Championships final. This was the first study to present time-series kinematic data around hurdle clearance, and given the technical ability of the athletes analyzed, it can be used as a template when analyzing the technique of other athletes in similar competitions and training. Video data were collected of the 16 finalists at the 2017 IAAF World Championships using four high-speed cameras (150 Hz). Video files were continuously digitized manually from touchdown before hurdle clearance to toe-off after landing around the sixth hurdle for men and the fifth hurdle for women, and sex-based comparisons were made at key discrete time points using independent t-tests, and throughout the entire hurdle phase using statistical parametric mapping. When calculated relative to hurdle height, the women's center of mass height was significantly greater than the men's throughout the full analyzed sequence (p < 0.001). Men also displayed more hip flexion in the lead leg at take-off before hurdle clearance (p = 0.029) as well as a more extended knee joint at intervals during flight and upon landing (p ≤ 0.037). Women completed the hurdle phase in a significantly shorter time than men (~11% difference, p < 0.001). Finally, women seemed to be more efficient by maintaining and even exceeding their entry velocity for the first 40% of the hurdle phase. These results show a lower technical demand for the women to successfully negotiate hurdle clearance, thus providing further evidence to support the argument that the women's hurdle height is too low for their performance capabilities and should be raised in senior competition
    corecore