5,752 research outputs found

    Determining the energetics of vicinal perovskite oxide surfaces

    Get PDF
    The energetics of vicinal SrTiO3_3(001) and DyScO3_3(110), prototypical perovskite vicinal surfaces, has been studied using topographic atomic force microscopy imaging. The kink formation and strain relaxation energies are extracted from a statistical analysis of the step meandering. Both perovskite surfaces have very similar kink formation energies and exhibit a similar triangular step undulation. Our experiments suggest that the energetics of perovskite oxide surfaces is mainly governed by the local oxygen coordination.Comment: 16 pages, 4 figure

    Theory of spin-orbit coupling in bilayer graphene

    Get PDF
    Theory of spin-orbit coupling in bilayer graphene is presented. The electronic band structure of the AB bilayer in the presence of spin-orbit coupling and a transverse electric field is calculated from first-principles using the linearized augmented plane wave method implemented in the WIEN2k code. The first-principles results around the K points are fitted to a tight-binding model. The main conclusion is that the spin-orbit effects in bilayer graphene derive essentially from the single-layer spin-orbit coupling which comes almost solely from the d orbitals. The intrinsic spin-orbit splitting (anticrossing) around the K points is about 24\mu eV for the low-energy valence and conduction bands, which are closest to the Fermi level, similarly as in the single layer graphene. An applied transverse electric field breaks space inversion symmetry and leads to an extrinsic (also called Bychkov-Rashba) spin-orbit splitting. This splitting is usually linearly proportional to the electric field. The peculiarity of graphene bilayer is that the low-energy bands remain split by 24\mu eV independently of the applied external field. The electric field, instead, opens a semiconducting band gap separating these low-energy bands. The remaining two high-energy bands are spin-split in proportion to the electric field; the proportionality coefficient is given by the second intrinsic spin-orbit coupling, whose value is 20\mu eV. All the band-structure effects and their spin splittings can be explained by our tight-binding model, in which the spin-orbit Hamiltonian is derived from symmetry considerations. The magnitudes of intra- and interlayer couplings---their values are similar to the single-layer graphene ones---are determined by fitting to first-principles results.Comment: 16 pages, 13 figures, 5 tables, typos corrected, published versio

    Imaging Pulsed Laser Deposition oxide growth by in-situ Atomic Force Microscopy

    Get PDF
    To visualize the topography of thin oxide films during growth, thereby enabling to study its growth behavior quasi real-time, we have designed and integrated an atomic force microscope (AFM) in a pulsed laser deposition (PLD) vacuum setup. The AFM scanner and PLD target are integrated in a single support frame, combined with a fast sample transfer method, such that in-situ microscopy can be utilized after subsequent deposition pulses. The in-situ microscope can be operated from room temperature (RT) up to 700^\circC and at (process) pressures ranging from the vacuum base pressure of 106^{-6} mbar up to 1 mbar, typical PLD conditions for the growth of oxide films. The performance of this instrument is demonstrated by resolving unit cell height surface steps and surface topography under typical oxide PLD growth conditions.Comment: 8 pages, 8 figure

    Electronic coupling between Bi nanolines and the Si(001) substrate: An experimental and theoretical study

    Full text link
    Atomic nanolines are one dimensional systems realized by assembling many atoms on a substrate into long arrays. The electronic properties of the nanolines depend on those of the substrate. Here, we demonstrate that to fully understand the electronic properties of Bi nanolines on clean Si(001) several different contributions must be accounted for. Scanning tunneling microscopy reveals a variety of different patterns along the nanolines as the imaging bias is varied. We observe an electronic phase shift of the Bi dimers, associated with imaging atomic p-orbitals, and an electronic coupling between the Bi nanoline and neighbouring Si dimers, which influences the appearance of both. Understanding the interplay between the Bi nanolines and Si substrate could open a novel route to modifying the electronic properties of the nanolines.Comment: 6 pages (main), 2 pages (SI), accepted by Phys. Rev.

    Measurement of Electron-Optical Parameters for High-Resolution Electron Microscopy Image Interpretation

    Get PDF
    A method is presented to measure various electron-optical parameters needed for high-resolution electron microscopy image interpretation with high accuracy. The method is based on the measurement of a series of beam-tilt induced image displacements. The displacements are calculated via cross-correlation of the images, and subsequently fitted to a third-order polynomal in the beam tilt. From two series of images (using the x and y beam tilt coils), the spherical aberration constant of the microscope can be measured, as well as the current values of defocus, beam tilt and astigmatism. The spherical aberration constant of three Philips microscopes is measured with a precision better than 1 %, apart from calibration errors.The misalignment in the reference image (i.e. without induced beam tilt) can be measured with an absolute accuracy of 0.05 mrad, while the accuracy in the measured defocus value is 5 nm (at a magnification of 250,000). A computer is used to direct the experiments via remote control of the microscope and perform fast image processing to calculate the cross-correlations

    Attentional avoidance of high-fat food in unsuccessful dieters

    Get PDF
    Using the exogenous cueing task, this study examined whether restrained and disinhibited eaters differ in their orientation of attention towards and their difficulty to disengage from high versus low-fat food pictures in a relatively short (500 ms) and a long presentation format (1500 ms). Overall, participants in the 500 ms condition showed a tendency to direct attention away from high-fat food pictures compared to neutral pictures. No differential pattern was evident for the 1500 ms condition. Correlational analysis revealed that reduced engagement with high-fat food was particularly pronounced for disinhibited eaters. Although in the short term this seems an adaptive strategy, it may eventually become counterproductive, as it could hinder habituation and learning to cope with seductive characteristics of high-fat food. (C) 2010 Elsevier Ltd. All rights reserved

    Localized Control of Curie Temperature in Perovskite Oxide Film by Capping-layer- induced Octahedral Distortion

    Get PDF
    With reduced dimensionality, it is often easier to modify the properties of ultra-thin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultra-thin perovskite SrRuO3 films by the deposition of a SrTiO3 capping layer, which can be lithographically patterned to achieve local control. Using a scanning Sagnac magnetic microscope, we show increase in the Curie temperature of SrRuO3 due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. This capping-layer-based technique may open new possibilities for developing functional oxide materials.Comment: Main-text 5 pages, SI 6 pages. To appear in Physical Review Letter

    Determination of the spin-flip time in ferromagnetic SrRuO3 from time-resolved Kerr measurements

    Get PDF
    We report time-resolved Kerr effect measurements of magnetization dynamics in ferromagnetic SrRuO3. We observe that the demagnetization time slows substantially at temperatures within 15K of the Curie temperature, which is ~ 150K. We analyze the data with a phenomenological model that relates the demagnetization time to the spin flip time. In agreement with our observations the model yields a demagnetization time that is inversely proportional to T-Tc. We also make a direct comparison of the spin flip rate and the Gilbert damping coefficient showing that their ratio very close to kBTc, indicating a common origin for these phenomena

    Effective calculation of LEED intensities using symmetry-adapted functions

    Get PDF
    The calculation of LEED intensities in a spherical-wave representation can be substantially simplified by symmetry relations. The wave field around each atom is expanded in symmetry-adapted functions where the local point symmetry of the atomic site applies. For overlayer systems with more than one atom per unit cell symmetry-adapted functions can be used when the division of the crystal into monoatomic subplanes is replaced by division into subplanes containing all symmetrically equivalent atomic positions
    corecore