26 research outputs found

    Coupled Ocean Atmosphere Processes and European Climate (COAPEC): improved understanding of the coupled climate system

    Get PDF
    COAPEC (http://coapec.nerc.ac.uk/) is a five-year Directed Science Programme funded by the Natural Environment Research Council (NERC). COAPEC is providing advances in understanding the mechanisms by which the ocean and atmosphere interact, how these processes are represented in state-of-the-art numerical climate models and how they determine the predictability of the climate system over seasonal-decadal timescales. Processes studied include the generation and propagation of salinity and heat anomalies in the North Atlantic, the influence of the thermohaline circulation and the role of storm tracks on European Climate. The influence of remote processes, including ocean-atmosphere coupling in tropical Atlantic warm events and Southern Ocean circulation are also being investigated. As part of the programme, new coupled models are being developed, including: a coupled hybrid isopycnic coordinate model; fast models for multi-ensemble runs to investigate model parameters space, using both high performance machines and spare home PC resources; a QG model to investigate high resolution ocean processes in coupled systems and validated ice models for coupled modelling. Underpinning research into improving the observational datasets, such as the SOC flux climatology, and into the influence of sea-ice observations in General Circulation Models is also being carried out as part of the programme. To place these advances into a socially relevant context, COAPEC is also investigating the methods for using, and economic benefits of, climate forecasts at seasonal timescales for the UK health sector and the UK energy industry

    “I Am Not Taking Sides as a Female At All”:Co-Facilitation and Gendered Positioning in a Domestic Abuse Perpetrator Program

    No full text
    The facilitation of domestic abuse perpetrator programs (DAPPs) by mixed gender co-facilitation pairs brings different facilitator perspectives and enables the modeling of egalitarian and respectful male-female relationships. This study analyzed 22 video and audio recordings of community-based DAPP groups featuring male participants, and male and female facilitators. Using thematic analysis, we aimed to understand how facilitators engaged participants and whether the facilitator’s gender affected this. We found an asymmetry in the positioning of the facilitators. Group participants challenged both facilitators, but especially the female facilitators. Facilitator strategies toward behavior change included softening direct challenges (female facilitators) and mobilizing the shared category of men (male facilitators). Implications from this study are for reflective practice in facilitator management and supervision specifically focused on gendered power dynamics. Skilled facilitation is key to behavior change and the gendered interplay within groups may be a crucial element in the reduction of interpersonal violence and abuse

    Diagnosis of mixing between middle latitudes and the polar vortex from tracer-tracer correlations

    No full text
    A method is introduced for diagnosing mixing between the polar vortex and midlatitudes from tracer data. Tracers with different photochemical activities and lifetimes usually exhibit curved tracer-tracer correlation functions on an isentropic surface. The effect of mixing events is to populate the inner side of such a curve. Using simultaneous measurements of trace gases or model results, we exploit this process to calculate the distribution of recent origins in tracer space prior to such a mixing event. The method relies on both hemispheric and local data and is applicable to situations where mixing is nonlocal in tracer space. It is applied to measurements taken during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment/Third European Stratospheric Experiment on Ozone 2000 (SOLVE/THESEO 2000) winter campaign and to a chemical transport model simulation covering the same winter. In one of the cases studied, a vortex breakup and subsequent remerger of the vortex fragments in March 2000 results in significant diagnosed mixing. In a further example, an elongated filament shed off the polar vortex is characterized by anomalous composition. For the two high-altitude aircraft flights of the SOLVE campaign that probe the vortex boundary, a correspondence is found for mixing diagnosed in the measurements and in the model. Mixing timescales considered here are given by the life span of planetary waves, up to a few weeks

    Diagnosis of mixing between middle latitudes and the polar vortex from tracer-tracer correlations

    No full text
    A method is introduced for diagnosing mixing between the polar vortex and midlatitudes from tracer data. Tracers with different photochemical activities and lifetimes usually exhibit curved tracer-tracer correlation functions on an isentropic surface. The effect of mixing events is to populate the inner side of such a curve. Using simultaneous measurements of trace gases or model results, we exploit this process to calculate the distribution of recent origins in tracer space prior to such a mixing event. The method relies on both hemispheric and local data and is applicable to situations where mixing is nonlocal in tracer space. It is applied to measurements taken during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment/Third European Stratospheric Experiment on Ozone 2000 (SOLVE/THESEO 2000) winter campaign and to a chemical transport model simulation covering the same winter. In one of the cases studied, a vortex breakup and subsequent remerger of the vortex fragments in March 2000 results in significant diagnosed mixing. In a further example, an elongated filament shed off the polar vortex is characterized by anomalous composition. For the two high-altitude aircraft flights of the SOLVE campaign that probe the vortex boundary, a correspondence is found for mixing diagnosed in the measurements and in the model. Mixing timescales considered here are given by the life span of planetary waves, up to a few weeks
    corecore