5,237 research outputs found
An integrated approach to system design, reliability, and diagnosis
The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized
Recommended from our members
Kinosternon integrum
Number of Pages: 6Integrative BiologyGeological Science
Letter Lengths
Define the length of a letter as the sum of the lengths of its component straight lines and arcs (ignoring details such as serifs).  Thus, the length of V is a little more than twice the length of I in most fonts, as O is greater than C, and B and R both greater than P.  To fix ideas, we define the uppercase letters as a combination of straight lines and arcs of circles.  Nearly all the letters can be embedded in rectangles 2 units by 1 unit in size, except for C, O, W and Q, all of which require a square 2 units on a side
A diagnosis system using object-oriented fault tree models
Spaceborne computing systems must provide reliable, continuous operation for extended periods. Due to weight, power, and volume constraints, these systems must manage resources very effectively. A fault diagnosis algorithm is described which enables fast and flexible diagnoses in the dynamic distributed computing environments planned for future space missions. The algorithm uses a knowledge base that is easily changed and updated to reflect current system status. Augmented fault trees represented in an object-oriented form provide deep system knowledge that is easy to access and revise as a system changes. Given such a fault tree, a set of failure events that have occurred, and a set of failure events that have not occurred, this diagnosis system uses forward and backward chaining to propagate causal and temporal information about other failure events in the system being diagnosed. Once the system has established temporal and causal constraints, it reasons backward from heuristically selected failure events to find a set of basic failure events which are a likely cause of the occurrence of the top failure event in the fault tree. The diagnosis system has been implemented in common LISP using Flavors
Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance Learning
Although aviation accidents are rare, safety incidents occur more frequently
and require a careful analysis to detect and mitigate risks in a timely manner.
Analyzing safety incidents using operational data and producing event-based
explanations is invaluable to airline companies as well as to governing
organizations such as the Federal Aviation Administration (FAA) in the United
States. However, this task is challenging because of the complexity involved in
mining multi-dimensional heterogeneous time series data, the lack of
time-step-wise annotation of events in a flight, and the lack of scalable tools
to perform analysis over a large number of events. In this work, we propose a
precursor mining algorithm that identifies events in the multidimensional time
series that are correlated with the safety incident. Precursors are valuable to
systems health and safety monitoring and in explaining and forecasting safety
incidents. Current methods suffer from poor scalability to high dimensional
time series data and are inefficient in capturing temporal behavior. We propose
an approach by combining multiple-instance learning (MIL) and deep recurrent
neural networks (DRNN) to take advantage of MIL's ability to learn using weakly
supervised data and DRNN's ability to model temporal behavior. We describe the
algorithm, the data, the intuition behind taking a MIL approach, and a
comparative analysis of the proposed algorithm with baseline models. We also
discuss the application to a real-world aviation safety problem using data from
a commercial airline company and discuss the model's abilities and
shortcomings, with some final remarks about possible deployment directions
Recommended from our members
The unity and diversity of executive functions: A systematic review and re-analysis of latent variable studies.
Confirmatory factor analysis (CFA) has been frequently applied to executive function measurement since first used to identify a three-factor model of inhibition, updating, and shifting; however, subsequent CFAs have supported inconsistent models across the life span, ranging from unidimensional to nested-factor models (i.e., bifactor without inhibition). This systematic review summarized CFAs on performance-based tests of executive functions and reanalyzed summary data to identify best-fitting models. Eligible CFAs involved 46 samples (N = 9,756). The most frequently accepted models varied by age (i.e., preschool = one/two-factor; school-age = three-factor; adolescent/adult = three/nested-factor; older adult = two/three-factor), and most often included updating/working memory, inhibition, and shifting factors. A bootstrap reanalysis simulated 5,000 samples from 21 correlation matrices (11 child/adolescent; 10 adult) from studies including the three most common factors, fitting seven competing models. Model results were summarized as the mean percent accepted (i.e., average rate at which models converged and met fit thresholds: CFI ≥ .90/RMSEA ≤ .08) and mean percent selected (i.e., average rate at which a model showed superior fit to other models: ΔCFI ≥ .005/.010/ΔRMSEA ≤ -.010/-.015). No model consistently converged and met fit criteria in all samples. Among adult samples, the nested-factor was accepted (41-42%) and selected (8-30%) most often. Among child/adolescent samples, the unidimensional model was accepted (32-36%) and selected (21-53%) most often, with some support for two-factor models without a differentiated shifting factor. Results show some evidence for greater unidimensionality of executive function among child/adolescent samples and both unity and diversity among adult samples. However, low rates of model acceptance/selection suggest possible bias toward the publication of well-fitting but potentially nonreplicable models with underpowered samples. (PsycINFO Database Record (c) 2018 APA, all rights reserved)
Half and Half Words
In the May 2005 Kickshaws, Dave Morice showed how VIOLET is a very unusual word: its letters are half vowels and half consonants, half from the first half of the alphabet and half from the last half, etc.  In an attempt to find out how unusual this word is, compared with other English words, we propose the following ten rules for dividing the alphabet into two parts
Intern Self-Care: An Exploratory Study Into Strategy Use and Effectiveness
In this exploratory study, 363 interns were surveyed to assess the frequency of use and effectiveness of self-care strategies used during the internship year. Among the most frequently used strategies were family and friend social support, active problem solving, and humor. The most effective strategies were family and friend social support, seeking pleasurable experiences, and humor. A strong positive relationship was found between total scores for Frequency and Effectiveness subscales, and women reported significantly more use and effectiveness of strategies. Recommendations and resources are provided for interns and internship sites that seek to further understand and encourage intern self-care
- …
