1,133 research outputs found
A Giant Sample of Giant Pulses from the Crab Pulsar
We observed the Crab pulsar with the 43-m telescope in Green Bank, WV over a
timespan of 15 months. In total we obtained 100 hours of data at 1.2 GHz and
seven hours at 330 MHz, resulting in a sample of about 95000 giant pulses
(GPs). This is the largest sample, to date, of GPs from the Crab pulsar taken
with the same telescope and backend and analyzed as one data set. We calculated
power-law fits to amplitude distributions for main pulse (MP) and interpulse
(IP) GPs, resulting in indices in the range of 2.1-3.1 for MP GPs at 1.2 GHz
and in the range of 2.5-3.0 and 2.4-3.1 for MP and IP GPs at 330 MHz. We also
correlated the GPs at 1.2 GHz with GPs from the Robert C. Byrd Green Bank
Telescope (GBT), which were obtained simultaneously at a higher frequency (8.9
GHz) over a span of 26 hours. In total, 7933 GPs from the 43-m telescope at 1.2
GHz and 39900 GPs from the GBT were recorded during these contemporaneous
observations. At 1.2 GHz, 236 (3%) MP GPs and 23 (5%) IP GPs were detected at
8.9 GHz, both with zero chance probability. Another 15 (4%) low-frequency IP
GPs were detected within one spin period of high-frequency IP GPs, with a
chance probability of 9%. This indicates that the emission processes at high
and low radio frequencies are related, despite significant pulse profile shape
differences. The 43-m GPs were also correlated with Fermi gamma-ray photons to
see if increased pair production in the magnetosphere is the mechanism
responsible for GP emission. A total of 92022 GPs and 393 gamma-ray photons
were used in this correlation analysis. No significant correlations were found
between GPs and gamma-ray photons. This indicates that increased pair
production in the magnetosphere is likely not the dominant cause of GPs.
Possible methods of GP production may be increased coherence of synchrotron
emission or changes in beaming direction.Comment: 33 pages, 10 figures, 6 tables, accepted for publication in Ap
Two dimensional modulational instability in photorefractive media
We study theoretically and experimentally the modulational instability of
broad optical beams in photorefractive nonlinear media. We demonstrate the
impact of the anisotropy of the nonlinearity on the growth rate of periodic
perturbations. Our findings are confirmed by experimental measurements in a
strontium barium niobate photorefractive crystal.Comment: 8 figure
A Non-Equilibrium Defect-Unbinding Transition: Defect Trajectories and Loop Statistics
In a Ginzburg-Landau model for parametrically driven waves a transition
between a state of ordered and one of disordered spatio-temporal defect chaos
is found. To characterize the two different chaotic states and to get insight
into the break-down of the order, the trajectories of the defects are tracked
in detail. Since the defects are always created and annihilated in pairs the
trajectories form loops in space time. The probability distribution functions
for the size of the loops and the number of defects involved in them undergo a
transition from exponential decay in the ordered regime to a power-law decay in
the disordered regime. These power laws are also found in a simple lattice
model of randomly created defect pairs that diffuse and annihilate upon
collision.Comment: 4 pages 5 figure
Effects of Home Exercise on Immediate and Delayed Affect and Mood Among Rural Individuals at Risk for Type 2 Diabetes
Physical activity is important for reducing overweight and obesity and related health consequences. This study examined changes in mood following 16 weeks of exercise in a sample of 29 individuals residing in a rural area and at risk for developing Type 2 diabetes mellitus (T2DM). Significant positive mood changes were detected, with moderate to large effect sizes. Assessments also revealed significant delayed postexercise positive emotion changes. These findings extend research on the mood benefits of exercise to individuals residing in rural settings and at risk for T2DM and suggest that to gain a full understanding of the exercise-affect relation, investigators need to assess affect at delayed intervals following exercise
Observation of dipole-mode vector solitons
We report on the first experimental observation of a novel type of optical
vector soliton, a {\em dipole-mode soliton}, recently predicted theoretically.
We show that these vector solitons can be generated in a photorefractive medium
employing two different processes: a phase imprinting, and a symmetry-breaking
instability of a vortex-mode vector soliton. The experimental results display
remarkable agreement with the theory, and confirm the robust nature of these
radially asymmetric two-component solitary waves.Comment: 4 pages, 8 figures; pictures in the PRL version are better qualit
Phase Diffusion in Localized Spatio-Temporal Amplitude Chaos
We present numerical simulations of coupled Ginzburg-Landau equations
describing parametrically excited waves which reveal persistent dynamics due to
the occurrence of phase slips in sequential pairs, with the second phase slip
quickly following and negating the first. Of particular interest are solutions
where these double phase slips occur irregularly in space and time within a
spatially localized region. An effective phase diffusion equation utilizing the
long term phase conservation of the solution explains the localization of this
new form of amplitude chaos.Comment: 4 pages incl. 5 figures uucompresse
Effect of Particle Size on Droplet Infiltration into Hydrophobic Porous Media As a Model of Water Repellent Soil
The wettability of soil is of great importance for plants and soil biota, and in determining the risk for preferential flow, surface runoff, flooding,and soil erosion. The molarity of ethanol droplet (MED) test is widely used for quantifying the severity of water repellency in soils that show reduced wettability and is assumed to be independent of soil particle size. The minimum ethanol concentration at which droplet penetration occurs within a short time (≤10 s) provides an estimate of the initial advancing contact angle at which spontaneous wetting is expected. In this study, we test the assumption of particle size independence using a simple model of soil, represented by layers of small (0.2–2 mm) diameter beads that predict the effect of changing bead radius in the top layer on capillary driven imbibition. Experimental results using a three-layer bead system show broad agreement with the model and demonstrate a dependence of the MED test on particle size. The results show that the critical initial advancing contact angle for penetration can be considerably less than 90° and varies with particle size, demonstrating that a key assumption currently used in the MED testing of soil is not necessarily valid
NFIRAOS: TMT facility adaptive optics with conventional DMs
Although many of the instruments planned for the TMT (Thirty Meter Telescope) have their own closely-coupled adaptive optics systems, TMT will also have a facility Adaptive Optics (AO) system feeding three instruments on the Nasmyth platform. For this Narrow-Field Infrared Adaptive Optics System, NFIRAOS (pronounced nefarious), the TMT project considered two architectures. One, described in this paper, employs conventional deformable mirrors with large diameters of about 300 mm and this is the reference design adopted by the TMT project. An alternative design based on MEMS was also studied, and is being presented separately in this conference. The requirements for NFIRAOS include 0.8-5 microns wavelength range, 30 arcsecond diameter output field of view (FOV), excellent sky coverage, and diffraction- limited atmospheric turbulence compensation (specified at 133 nm RMS including residual telescope and science instrument errors.) The reference design for NFIRAOS includes multiple sodium laser guide stars over a 70 arcsecond FOV, and an infrared tip/tilt/focus/astigmatism natural guide star sensor within instruments. Larger telescopes require greater deformable mirror (DM) stroke. Although initially NFIRAOS will correct a 10 arcsecond science field, it uses two deformable mirrors in series, partly to provide sufficient stroke for atmospheric correction over the 30 m telescope aperture, but mainly to partially correct a 2 arcminute diameter "technical" field to sharpen near-IR natural guide stars and improve sky coverage. The planned upgrade to full performance includes replacing the groundconjugated DM with a higher actuator density, and using a deformable telescope secondary mirror as a "woofer." NFIRAOS incorporates an instrument rotator and selection of three live instruments: a near-Infrared integral field Imaging spectrograph, a near-infrared echelle spectrograph, and after upgrading NFIRAOS to full multi-conjugation, a wide field (30 arcsecond) infrared camera
- …