1,133 research outputs found

    A Giant Sample of Giant Pulses from the Crab Pulsar

    Get PDF
    We observed the Crab pulsar with the 43-m telescope in Green Bank, WV over a timespan of 15 months. In total we obtained 100 hours of data at 1.2 GHz and seven hours at 330 MHz, resulting in a sample of about 95000 giant pulses (GPs). This is the largest sample, to date, of GPs from the Crab pulsar taken with the same telescope and backend and analyzed as one data set. We calculated power-law fits to amplitude distributions for main pulse (MP) and interpulse (IP) GPs, resulting in indices in the range of 2.1-3.1 for MP GPs at 1.2 GHz and in the range of 2.5-3.0 and 2.4-3.1 for MP and IP GPs at 330 MHz. We also correlated the GPs at 1.2 GHz with GPs from the Robert C. Byrd Green Bank Telescope (GBT), which were obtained simultaneously at a higher frequency (8.9 GHz) over a span of 26 hours. In total, 7933 GPs from the 43-m telescope at 1.2 GHz and 39900 GPs from the GBT were recorded during these contemporaneous observations. At 1.2 GHz, 236 (3%) MP GPs and 23 (5%) IP GPs were detected at 8.9 GHz, both with zero chance probability. Another 15 (4%) low-frequency IP GPs were detected within one spin period of high-frequency IP GPs, with a chance probability of 9%. This indicates that the emission processes at high and low radio frequencies are related, despite significant pulse profile shape differences. The 43-m GPs were also correlated with Fermi gamma-ray photons to see if increased pair production in the magnetosphere is the mechanism responsible for GP emission. A total of 92022 GPs and 393 gamma-ray photons were used in this correlation analysis. No significant correlations were found between GPs and gamma-ray photons. This indicates that increased pair production in the magnetosphere is likely not the dominant cause of GPs. Possible methods of GP production may be increased coherence of synchrotron emission or changes in beaming direction.Comment: 33 pages, 10 figures, 6 tables, accepted for publication in Ap

    Two dimensional modulational instability in photorefractive media

    Full text link
    We study theoretically and experimentally the modulational instability of broad optical beams in photorefractive nonlinear media. We demonstrate the impact of the anisotropy of the nonlinearity on the growth rate of periodic perturbations. Our findings are confirmed by experimental measurements in a strontium barium niobate photorefractive crystal.Comment: 8 figure

    A Non-Equilibrium Defect-Unbinding Transition: Defect Trajectories and Loop Statistics

    Full text link
    In a Ginzburg-Landau model for parametrically driven waves a transition between a state of ordered and one of disordered spatio-temporal defect chaos is found. To characterize the two different chaotic states and to get insight into the break-down of the order, the trajectories of the defects are tracked in detail. Since the defects are always created and annihilated in pairs the trajectories form loops in space time. The probability distribution functions for the size of the loops and the number of defects involved in them undergo a transition from exponential decay in the ordered regime to a power-law decay in the disordered regime. These power laws are also found in a simple lattice model of randomly created defect pairs that diffuse and annihilate upon collision.Comment: 4 pages 5 figure

    Effects of Home Exercise on Immediate and Delayed Affect and Mood Among Rural Individuals at Risk for Type 2 Diabetes

    Get PDF
    Physical activity is important for reducing overweight and obesity and related health consequences. This study examined changes in mood following 16 weeks of exercise in a sample of 29 individuals residing in a rural area and at risk for developing Type 2 diabetes mellitus (T2DM). Significant positive mood changes were detected, with moderate to large effect sizes. Assessments also revealed significant delayed postexercise positive emotion changes. These findings extend research on the mood benefits of exercise to individuals residing in rural settings and at risk for T2DM and suggest that to gain a full understanding of the exercise-affect relation, investigators need to assess affect at delayed intervals following exercise

    Observation of dipole-mode vector solitons

    Full text link
    We report on the first experimental observation of a novel type of optical vector soliton, a {\em dipole-mode soliton}, recently predicted theoretically. We show that these vector solitons can be generated in a photorefractive medium employing two different processes: a phase imprinting, and a symmetry-breaking instability of a vortex-mode vector soliton. The experimental results display remarkable agreement with the theory, and confirm the robust nature of these radially asymmetric two-component solitary waves.Comment: 4 pages, 8 figures; pictures in the PRL version are better qualit

    Phase Diffusion in Localized Spatio-Temporal Amplitude Chaos

    Full text link
    We present numerical simulations of coupled Ginzburg-Landau equations describing parametrically excited waves which reveal persistent dynamics due to the occurrence of phase slips in sequential pairs, with the second phase slip quickly following and negating the first. Of particular interest are solutions where these double phase slips occur irregularly in space and time within a spatially localized region. An effective phase diffusion equation utilizing the long term phase conservation of the solution explains the localization of this new form of amplitude chaos.Comment: 4 pages incl. 5 figures uucompresse

    Effect of Particle Size on Droplet Infiltration into Hydrophobic Porous Media As a Model of Water Repellent Soil

    Get PDF
    The wettability of soil is of great importance for plants and soil biota, and in determining the risk for preferential flow, surface runoff, flooding,and soil erosion. The molarity of ethanol droplet (MED) test is widely used for quantifying the severity of water repellency in soils that show reduced wettability and is assumed to be independent of soil particle size. The minimum ethanol concentration at which droplet penetration occurs within a short time (≤10 s) provides an estimate of the initial advancing contact angle at which spontaneous wetting is expected. In this study, we test the assumption of particle size independence using a simple model of soil, represented by layers of small (0.2–2 mm) diameter beads that predict the effect of changing bead radius in the top layer on capillary driven imbibition. Experimental results using a three-layer bead system show broad agreement with the model and demonstrate a dependence of the MED test on particle size. The results show that the critical initial advancing contact angle for penetration can be considerably less than 90° and varies with particle size, demonstrating that a key assumption currently used in the MED testing of soil is not necessarily valid

    NFIRAOS: TMT facility adaptive optics with conventional DMs

    Get PDF
    Although many of the instruments planned for the TMT (Thirty Meter Telescope) have their own closely-coupled adaptive optics systems, TMT will also have a facility Adaptive Optics (AO) system feeding three instruments on the Nasmyth platform. For this Narrow-Field Infrared Adaptive Optics System, NFIRAOS (pronounced nefarious), the TMT project considered two architectures. One, described in this paper, employs conventional deformable mirrors with large diameters of about 300 mm and this is the reference design adopted by the TMT project. An alternative design based on MEMS was also studied, and is being presented separately in this conference. The requirements for NFIRAOS include 0.8-5 microns wavelength range, 30 arcsecond diameter output field of view (FOV), excellent sky coverage, and diffraction- limited atmospheric turbulence compensation (specified at 133 nm RMS including residual telescope and science instrument errors.) The reference design for NFIRAOS includes multiple sodium laser guide stars over a 70 arcsecond FOV, and an infrared tip/tilt/focus/astigmatism natural guide star sensor within instruments. Larger telescopes require greater deformable mirror (DM) stroke. Although initially NFIRAOS will correct a 10 arcsecond science field, it uses two deformable mirrors in series, partly to provide sufficient stroke for atmospheric correction over the 30 m telescope aperture, but mainly to partially correct a 2 arcminute diameter "technical" field to sharpen near-IR natural guide stars and improve sky coverage. The planned upgrade to full performance includes replacing the groundconjugated DM with a higher actuator density, and using a deformable telescope secondary mirror as a "woofer." NFIRAOS incorporates an instrument rotator and selection of three live instruments: a near-Infrared integral field Imaging spectrograph, a near-infrared echelle spectrograph, and after upgrading NFIRAOS to full multi-conjugation, a wide field (30 arcsecond) infrared camera
    • …
    corecore