13,373 research outputs found

    Optimization of microwave radiometric systems for earth resource surveys Final report

    Get PDF
    Optimization of passive microwave radiometric systems for earth resource surveys from ground and aircraft based measurement

    Somatostatin agonist pasireotide inhibits exercise stimulated growth in the male Siberian hamster (Phodopus sungorus)

    Get PDF
    R.Dumbell was supported by a University of Aberdeen PhD studentship and a research visit grant awarded by the British Society of Neuroendocrinology. Further support was provided by the Scottish Government Rural and Environment Science and Analytical Services Division (Barrett and the German Research Foundation (DFG; STE 331/8-1; Steinlechner lab). We are grateful for technical assistance from Dana Wilson at RINH and Siegried Hiliken at UVMH, and thank Dr Claus-Dieter Mayer of Biomathematics & Statistics Scotland for valuable advice on statistical analysis.Peer reviewedPostprin

    Flow Characteristics in HyperVapotron Elements Operating with Nanofluids

    Get PDF
    HyperVapotrons are highly robust and efficient heat exchangers able to transfer high heat fluxes of the order of 10-20MW/m2. They employ the Vapotron effect, a complex two phase heat transfer mechanism, which is strongly linked to the hydrodynamic structures present in the coolant flow inside the devices. HyperVapotrons are currently tested in the Joined European Torus (JET) and the Mega Amp Spherical Tokamak (MAST) fusion experiments and are considered a strong candidate for the International Thermonuclear Experimental Reactor (ITER). The efficiency of heat transfer and the reliability of the components of a fusion power plant are important factors to ensure its longevity and economical sustainability. Optimisation of the heat transfer performance of these devices by the use of nanofluids is investigated in this paper. Nanofluids are advanced two phase coolants that exhibit heat transfer augmentation phenomena. A cold isothermal nanofluid flow is established inside two HyperVapotron models representing the geometries used at JET and MAST. A hybrid particle image velocimetry method is then employed to map in high spatial resolution (30μm) the flow fields inside each replica. The instantaneous and mean flow structures of a nanofluid are compared to those present during the use of a traditional coolant (water) in order to detect any departure from the hydrodynamic design operational regime of the device. It was discovered that the flow field of the JET model is considerably affected when using nanofluids, while the flow in the MAST geometry does not change significantly by the introduction of nanofluids. Evidence of a shear thinning mechanism is found inside the momentum boundary layer of the nanofluid flows and it might be important to calculating the pumping power losses of a functional nuclear fusion power plant cooling system ran with nanofluids instead of water. This work is a continuation of a previous study on HyperVapotrons and nanofluids, as documented by [1-3]

    Does the Isotropy of the CMB Imply a Homogeneous Universe? Some Generalised EGS Theorems

    Get PDF
    We demonstrate that the high isotropy of the Cosmic Microwave Background (CMB), combined with the Copernican principle, is not sufficient to prove homogeneity of the universe -- in contrast to previous results on this subject. The crucial additional factor not included in earlier work is the acceleration of the fundamental observers. We find the complete class of irrotational perfect fluid spacetimes admitting an exactly isotropic radiation field for every fundamental observer and show that are FLRW if and only if the acceleration is zero. While inhomogeneous in general, these spacetimes all possess three-dimensional symmetry groups, from which it follows that they also admit a thermodynamic interpretation. In addition to perfect fluids models we also consider multi-component fluids containing non-interacting radiation, dust and a quintessential scalar field or cosmological constant in which the radiation is isotropic for the geodesic (dust) observers. It is shown that the non-acceleration of the fundamental observers forces these spacetimes to be FLRW. While it is plausible that fundamental observers (galaxies) in the real universe follow geodesics, it is strictly necessary to determine this from local observations for the cosmological principle to be more than an assumption. We discuss how observations may be used to test this.Comment: replaced with final version. Added discusion and ref

    A Lorentzian Signature Model for Quantum General Relativity

    Get PDF
    We give a relativistic spin network model for quantum gravity based on the Lorentz group and its q-deformation, the Quantum Lorentz Algebra. We propose a combinatorial model for the path integral given by an integral over suitable representations of this algebra. This generalises the state sum models for the case of the four-dimensional rotation group previously studied in gr-qc/9709028. As a technical tool, formulae for the evaluation of relativistic spin networks for the Lorentz group are developed, with some simple examples which show that the evaluation is finite in interesting cases. We conjecture that the `10J' symbol needed in our model has a finite value.Comment: 22 pages, latex, amsfonts, Xypic. Version 3: improved presentation. Version 2 is a major revision with explicit formulae included for the evaluation of relativistic spin networks and the computation of examples which have finite value

    Far Ultraviolet Spectroscopic Explorer Spectroscopy of the Nova-like BB Doradus

    Full text link
    We present an analysis of the Far Ultraviolet Spectroscopic Explorer ({\it{FUSE}}) spectra of the little-known southern nova-like BB Doradus. The spectrum was obtained as part of our Cycle 8 {\it FUSE} survey of high declination nova-like stars. The FUSE spectrum of BB Dor, observed in a high state, is modeled with an accretion disk with a very low inclination (possibly lower than 10deg). Assuming an average WD mass of 0.8 solar leads to a mass accretion rate of 1.E-9 Solar mass/year and a distance of the order of 650 pc, consistent with the extremely low galactic reddening in its direction. The spectrum presents some broad and deep silicon and sulfur absorption lines, indicating that these elements are over-abundant by 3 and 20 times solar, respectively

    Ab-initio shell model with a core

    Full text link
    We construct effective 2- and 3-body Hamiltonians for the p-shell by performing 12\hbar\Omega ab initio no-core shell model (NCSM) calculations for A=6 and 7 nuclei and explicitly projecting the many-body Hamiltonians onto the 0\hbar\Omega space. We then separate these effective Hamiltonians into 0-, 1- and 2-body contributions (also 3-body for A=7) and analyze the systematic behavior of these different parts as a function of the mass number A and size of the NCSM basis space. The role of effective 3- and higher-body interactions for A>6 is investigated and discussed
    corecore