3,221 research outputs found

    Signal and noise of Diamond Pixel Detectors at High Radiation Fluences

    Full text link
    CVD diamond is an attractive material option for LHC vertex detectors because of its strong radiation-hardness causal to its large band gap and strong lattice. In particular, pixel detectors operating close to the interaction point profit from tiny leakage currents and small pixel capacitances of diamond resulting in low noise figures when compared to silicon. On the other hand, the charge signal from traversing high energy particles is smaller in diamond than in silicon by a factor of about 2.2. Therefore, a quantitative determination of the signal-to-noise ratio (S/N) of diamond in comparison with silicon at fluences in excess of 1015^{15} neq_{eq} cm−2^{-2}, which are expected for the LHC upgrade, is important. Based on measurements of irradiated diamond sensors and the FE-I4 pixel readout chip design, we determine the signal and the noise of diamond pixel detectors irradiated with high particle fluences. To characterize the effect of the radiation damage on the materials and the signal decrease, the change of the mean free path λe/h\lambda_{e/h} of the charge carriers is determined as a function of irradiation fluence. We make use of the FE-I4 pixel chip developed for ATLAS upgrades to realistically estimate the expected noise figures: the expected leakage current at a given fluence is taken from calibrated calculations and the pixel capacitance is measured using a purposely developed chip (PixCap). We compare the resulting S/N figures with those for planar silicon pixel detectors using published charge loss measurements and the same extrapolation methods as for diamond. It is shown that the expected S/N of a diamond pixel detector with pixel pitches typical for LHC, exceeds that of planar silicon pixels at fluences beyond 1015^{15} particles cm−2^{-2}, the exact value only depending on the maximum operation voltage assumed for irradiated silicon pixel detectors

    Dose-related beneficial long-term hemodynamic and clinical efficacy of irbesartan in heart failure

    Get PDF
    AbstractOBJECTIVESThe primary purpose of this study was to determine the acute and long-term hemodynamic and clinical effects of irbesartan in patients with heart failure.BACKGROUNDInhibition of angiotensin II production by angiotensin-converting enzyme (ACE) inhibitors reduces morbidity and mortality in patients with heart failure. Irbesartan is an orally active antagonist of the angiotensin II AT1receptor subtype with potential efficacy in heart failure.METHODSTwo hundred eighteen patients with symptomatic heart failure (New York Heart Association [NYHA] class II–IV) and left ventricular ejection fraction ≀40% participated in the study. Serial hemodynamic measurements were made over 24 h following randomization to irbesartan 12.5 mg, 37.5 mg, 75 mg, 150 mg or placebo. After the first dose of study medication, patients receiving placebo were reallocated to one of the four irbesartan doses, treatment was continued for 12 weeks and hemodynamic measurements were repeated.RESULTSIrbesartan induced significant dose-related decreases in pulmonary capillary wedge pressure (average change −5.9 ± 0.9 mm Hg and −5.3 ± 0.9 mm Hg for irbesartan 75 mg and 150 mg, respectively) after 12 weeks of therapy without causing reflex tachycardia and without increasing plasma norepinephrine. The neurohormonal effects of irbesartan were highly variable and none of the changes was statistically significant. There was a significant dose-related decrease in the percentage of patients discontinuing study medication because of worsening heart failure. Irbesartan was well tolerated without evidence of dose-related cough or azotemia.CONCLUSIONSIrbesartan, at once-daily doses of 75 mg and 150 mg, induced sustained hemodynamic improvement and prevented worsening heart failure

    Production and characterization of micro-size pores for ion track etching applications

    Get PDF
    For many years the applications of ion track etch materials have increased considerably, like charged particles detection, molecular identification with nanopores, ion track filters, magnetic studies with nanowires and so on. Over the materials generally used as track detector, the Poly-Allyl-Diglycol Carbonate (PADC), offers many advantages, like its nearly 100 % detection efficiency for charged particle, a high resistance to harsh environment, the lowest detection threshold, a high abrasion resistance and a low production costs. All of these properties have made it particularly attractive material, even if due to its brittleness, obtaining a thin film (less than 500 ÎŒm) is still a challenge. In this work, PADC foils have been exposed to a-particles emitted by a thin radioactive source of 241Am and to C ions from the Tandetron 4130 MC accelerator. The latent tracks generated in the polymer have been developed using a standard etching procedure in 6.25 NaOH solution. The dependence of the ion tracks' geometry on the ion beam energy and fluence has been evaluated combining the information obtained through a semiautomatic computer script that selects the etched ion tracks according to their diameter and mean grey value and nanometric resolution images by atomic force microscopy

    One- and two-body decomposable Poisson-Boltzmann methods for protein design calculations

    Get PDF
    Successfully modeling electrostatic interactions is one of the key factors required for the computational design of proteins with desired physical, chemical, and biological properties. In this paper, we present formulations of the finite difference Poisson-Boltzmann (FDPB) model that are pairwise decomposable by side chain. These methods use reduced representations of the protein structure based on the backbone and one or two side chains in order to approximate the dielectric environment in and around the protein. For the desolvation of polar side chains, the two-body model has a 0.64 kcal/mol RMSD compared to FDPB calculations performed using the full representation of the protein structure. Screened Coulombic interaction energies between side chains are approximated with an RMSD of 0.13 kcal/mol. The methods presented here are compatible with the computational demands of protein design calculations and produce energies that are very similar to the results of traditional FDPB calculations

    Experimental library screening demonstrates the successful application of computational protein design to large structural ensembles

    Get PDF
    The stability, activity, and solubility of a protein sequence are determined by a delicate balance of molecular interactions in a variety of conformational states. Even so, most computational protein design methods model sequences in the context of a single native conformation. Simulations that model the native state as an ensemble have been mostly neglected due to the lack of sufficiently powerful optimization algorithms for multistate design. Here, we have applied our multistate design algorithm to study the potential utility of various forms of input structural data for design. To facilitate a more thorough analysis, we developed new methods for the design and high-throughput stability determination of combinatorial mutation libraries based on protein design calculations. The application of these methods to the core design of a small model system produced many variants with improved thermodynamic stability and showed that multistate design methods can be readily applied to large structural ensembles. We found that exhaustive screening of our designed libraries helped to clarify several sources of simulation error that would have otherwise been difficult to ascertain. Interestingly, the lack of correlation between our simulated and experimentally measured stability values shows clearly that a design procedure need not reproduce experimental data exactly to achieve success. This surprising result suggests potentially fruitful directions for the improvement of computational protein design technology

    Pulse wave velocity and carotid atherosclerosis in White and Latino patients with hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preventive cardiology has expanded beyond coronary heart disease towards prevention of a broader spectrum of cardiovascular diseases. Ethnic minorities are at proportionately greater risk for developing extracoronary vascular disease including heart failure and cerebrovascular disease.</p> <p>Methods</p> <p>We performed a cross sectional study of Latino and White hypertension patients in a safety-net healthcare system. Framingham risk factors, markers of inflammation (hsCRP, LPpLA2), arterial stiffness (Pulse wave velocity, augmentation index, and central aortic pressure), and endothelial function (brachial artery flow-mediated dilatation) were measured. Univariate and multivariable associations between these parameters and an index of extracoronary atherosclerosis (carotid intima media thickness) was performed.</p> <p>Results</p> <p>Among 177 subjects, mean age was 62 years, 67% were female, and 67% were Latino. In univariate analysis, markers associated with carotid intima media thickness (IMT) at p < 0.25 included pulse wave velocity (PWV), augmentation index (AIx), central aortic pressure (cAP), and LpPLA<sub>2 </sub>activity rank. However, AIx, cAP, and LpPLA2 activity were not significantly associated with carotid IMT after adjusting for Framingham risk factors (all p > .10). Only PWV retained a significant association with carotid IMT independent of the Framingham general risk profile parameters (p = .016). No statistically significant interactions between Framingham and other independent variables with ethnicity (all p > .05) were observed.</p> <p>Conclusion</p> <p>In this safety net cohort, PWV is a potentially useful adjunctive atherosclerotic risk marker independent of traditional risk factors and irrespective of ethnicity.</p

    RBS, PIXE, Ion-Microbeam and SR-FTIR Analyses of Pottery Fragments from Azerbaijan

    Get PDF
    The present work is aimed at the investigation of the ceramic bulk and pigmented glazed surfaces of ancient potteries dating back to XIX century A.D. and coming from the charming archeological site located in the Medieval Agsu town (Azerbaijan), a geographic area of special interest due to the ancient commercial routes between China, Asia Minor, and Europe. For the purpose of the study, complementary investigation tools have been exploited: non-destructive or micro-destructive investigation at elemental level by ion beam analysis (IBA) techniques, by using Rutherford Backscattering Spectrometry (RBS), Proton-Induced X-ray Emission (PIXE) spectroscopy and ion-microbeam analysis, and chemical characterization at microscopic level, by means of synchrotron radiation (SR) Fourier transform infrared (FTIR) microspectroscopy. The acquired information reveals useful for the identification of the provenance, the reconstruction of the firing technology, and finally, the identification of the pigment was used as a colorant of the glaze
    • 

    corecore