301 research outputs found

    Polarisation observations of VY Canis Majoris H_2O 5_(32)–4_(41) 620.701 GHz maser emission with HIFI

    Get PDF
    Context. Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight. Aims. We have aimed to elucidate the nature and structure of the VY CMa water vapour masers in part by observationally testing a theoretical prediction of the relative strengths of the 620.701 GHz and the 22.235 GHz maser components of ortho H_2O. Methods. In its high-resolution mode (HRS) the Herschel Heterodyne Instrument for the Far Infrared (HIFI) offers a frequency resolution of 0.125 MHz, corresponding to a line-of-sight velocity of 0.06 km s^(-1), which we employed to obtain the strength and linear polarisation of maser spikes in the spectrum of VY CMa at 620.701 GHz. Simultaneous ground based observations of the 22.235 GHz maser with the Max-Planck-Institut für Radioastronomie 100-m telescope at Effelsberg, provided a ratio of 620.701 GHz to 22.235 GHz emission. Results. We report the first astronomical detection to date of H_2O maser emission at 620.701 GHz. In VY CMa both the 620.701 and the 22.235 GHz polarisation are weak. At 620.701 GHz the maser peaks are superposed on what appears to be a broad emission component, jointly ejected from the star. We observed the 620.701 GHz emission at two epochs 21 days apart, both to measure the potential direction of linearly polarised maser components and to obtain a measure of the longevity of these components. Although we do not detect significant polarisation levels in the core of the line, they rise up to approximately 6% in its wings

    557 GHz Observations of Water Vapor Outflows from VY CMa and W Hydrae

    Get PDF
    We report the first detection of thermal water vapor emission in the 557 GHz, 1101011_{10} - 1_{01} ground state transition of ortho-H2_2O toward VY Canis Majoris. In observations obtained with the Submillimeter Wave Astronomy Satellite (SWAS), we measured a flux of 450\sim 450 Jy, in a spectrally resolved line centered on a velocity vLSR=25v_{LSR} = 25 km s1^{-1} with a full width half maximum of 35\sim 35 km s1^{-1}, somewhat dependent on the assumed line shape. We analyze the line shape in the context of three different radial outflow models for which we provide analytical expressions. We also detected a weaker 557 GHz emission line from W Hydrae. We find that these and other H2_2O emission line strengths scale as suggested by Zubko and Elitzur (2000).Comment: Astrophysical Journal Letters, accepte

    A practical multi-spectrum Hadamard Transform Spectrometer

    Get PDF
    A Hadamard Transform Spectrometer (HTS) which simultaneously obtains fifteen infrared spectra, each having 255 spectral elements was constructed. Spectra are obtained essentially in real time through use of a minicomputer with 8K words of memory and a CRT display. This permits operation of the instrument in the field

    SWAS observations of comet 9P/Tempel 1 and Deep Impact

    Full text link
    On 4 July 2005 at 1:52 UT the Deep Impact mission successfully completed its goal to hit the nucleus of 9P/Tempel 1 with an impactor, forming a crater on the nucleus and ejecting material into the coma of the comet. The 370 kg impactor collided with the sunlit side of the nucleus with a relative velocity of 10.2 km/s. NASA's Submillimeter Wave Astronomy Satellite (SWAS) observed the 1(10)-1(01) ortho-water ground-state rotational transition in comet 9P/Tempel 1 before, during, and after the impact. No excess emission from the impact was detected by SWAS. However, the water production rate of the comet showed large natural variations of more than a factor of three during the weeks before the impact.Comment: to appear in the proceedings of the IAU Symposium No. 231: "Astrochemistry - Recent Successes and Current Callenges". Typo corrected in author affiliation lis

    Polarisation Observations of H2_{2}O JK1K1=532441J_{K_{-1}K_{1}} = 5_{32} - 4_{41} 620.701 GHz Maser Emission with Herschel/HIFI in Orion KL

    Full text link
    Context. The high intensities and narrow bandwidths exhibited by some astronomical masers make them ideal tools for studying star-forming giant molecular clouds. The water maser transition JK1K1=532441J_{K_{-1}K_{1}}=5_{32}-4_{41} at 620.701 GHz can only be observed from above Earth's strongly absorbing atmosphere; its emission has recently been detected from space. Aims. We sought to further characterize the star-forming environment of Orion KL by investigating the linear polarisation of a source emitting a narrow 620.701 GHz maser feature with the heterodyne spectrometer HIFI on board the Herschel Space Observatory. Methods. High-resolution spectral datasets were collected over a thirteen month period beginning in 2011 March, to establish not only the linear polarisation but also the temporal variability of the source. Results. Within a 3σ3\sigma uncertainty, no polarisation was detected to an upper limit of approximately 2%. These results are compared with coeval linear polarisation measurements of the 22.235 GHz JK1K1=616523J_{K_{-1}K_{1}}=6_{16}-5_{23} maser line from the Effelsberg 100-m radio telescope, typically a much stronger maser transition. Although strongly polarised emission is observed for one component of the 22.235 GHz maser at 7.2 km s1^{-1}, a weaker component at the same velocity as the 620.701 GHz maser at 11.7 km s1^{-1} is much less polarised.Comment: Accepted for publication in A&

    Exploring the Time Domain With Synoptic Sky Surveys

    Get PDF
    Synoptic sky surveys are becoming the largest data generators in astronomy, and they are opening a new research frontier, that touches essentially every field of astronomy. Opening of the time domain to a systematic exploration will strengthen our understanding of a number of interesting known phenomena, and may lead to the discoveries of as yet unknown ones. We describe some lessons learned over the past decade, and offer some ideas that may guide strategic considerations in planning and execution of the future synoptic sky surveys.Comment: Invited talk, to appear in proc. IAU SYmp. 285, "New Horizons in Time Domain Astronomy", eds. E. Griffin et al., Cambridge Univ. Press (2012). Latex file, 6 pages, style files include

    High resolution 10 mu spectrometry at different planetary latitudes. A practical Hadamard transform spectrometer for astronomical application

    Get PDF
    Infrared observations at different latitudes were studied in order to obtain spectra in the 10 micrometers region to understand differences in chemical composition or physical structure of the optical features. In order to receive such spectra of a rotating planet, simultaneous observations at different latitudes were made. A Hadamard transform spectrometer with 15 entrance slits was used to obtain 15 simultaneous spectra, at a resolution of 0.01 micrometers. The spectral band covered contained 255 spectral elements

    van der Kruit to Spitzer: A New Look at the FIR-Radio Correlation

    Full text link
    We present an initial look at the far infrared-radio correlation within the star-forming disks of four nearby, nearly face-on galaxies (NGC~2403, NGC~3031, NGC~5194, and NGC~6946). Using {\it Spitzer} MIPS imaging and WSRT radio continuum data, we are able to probe variations in the logarithmic 70~μ\mum/22~cm (q70q_{70}) flux density ratios across each disk at sub-kpc scales. We find general trends of decreasing q70q_{70} with declining surface brightness and with increasing radius. We also find that the dispersion in q70q_{70} within galaxies is comparable to what is measured {\it globally} among galaxies at around 0.2 dex. We have also performed preliminary phenomenological modeling of cosmic ray electron (CRee^{-}) diffusion using an image-smearing technique, and find that smoothing the infrared maps improves their correlation with the radio maps. The best fit smoothing kernels for the two less active star-forming galaxies (NGC~2403 and NGC~3031) have much larger scale-lengths than that of the more active star-forming galaxies (NGC~5194 and NGC~6946). This difference may be due to the relative deficit of recent CRee^{-} injection into the interstellar medium (ISM) for the galaxies having largely quiescent disks.Comment: 6 pages, 3 figures, To appear in the proceedings of the "Island Universes: Structure and Evolution of Disk Galaxies" conference held in Terschelling, Netherlands, July 2005, ed. R. de Jong (Springer: Dordrecht

    183 GHz H2_2O maser emission around the low-mass protostar Serpens SMM1

    Full text link
    We report the first interferomteric detection of 183 GHz water emission in the low-mass protostar Serpens SMM1 using the Submillimeter Array with a resolution of 3"" and rms of \sim7 Jy in a 3 km s1^{-1} bin. Due to the small size and high brightnessof more than 240 Jy/beam, it appears to be maser emission. In total three maser spots were detected out to \sim 700 AU from the central protostar, lying along the red-shifted outflow axis, outside the circumstellar disk but within the envelope region as evidenced by the continuum measurements. Two of the maser spots appear to be blue-shifted by about 1 to 2 km s1^{-1}. No extended or compact thermal emission from a passively heated protostellar envelope was detected with a limit of 7 Jy (16 K), in agreement with recent modelling efforts. We propose that the maser spots originate within the cavity walls due to the interaction of the outflow jet with the surrounding protostellar envelope. Hydrodynamical models predict that such regions can be dense and warm enough to invert the 183 GHz water transition.Comment: Accepted for ApJ letters, 2 figure
    corecore