161 research outputs found

    The “design event” : The anti-design- historian and a poetics of the object

    Get PDF
    What happens when a sudden encounter with a design-object calls into question traditional approaches to the history of design? Or, alternatively, when such moments make manifest how the symbolic roles we occupy as design historians can serve to obstruct our singular relationship to the object? Beginning with what is cautiously termed the “design event,” this article seeks to explore how an examination of how our own unconscious fascinations and obsessions that encircle the material object, can offer the potential for a self-reflective approach to design history, one that locates the reasons for our passionate preoccupations at the very heart of our analysis. Furthermore, it is argued that a focus on what is singular to the self, on the intersubjective relationships that have shaped our attachments to certain objects, can serve to form part of a broader challenge to the carefully constructed symbolic identities we are interpellated by in our professional roles as historians.Peer reviewe

    Two Cellular Protein Kinases, DNA-PK and PKA, Phosphorylate the Adenoviral L4-33K Protein and Have Opposite Effects on L1 Alternative RNA Splicing

    Get PDF
    Accumulation of the complex set of alternatively processed mRNA from the adenovirus major late transcription unit (MLTU) is subjected to a temporal regulation involving both changes in poly (A) site choice and alternative 3′ splice site usage. We have previously shown that the adenovirus L4-33K protein functions as an alternative splicing factor involved in activating the shift from L1-52,55K to L1-IIIa mRNA. Here we show that L4-33K specifically associates with the catalytic subunit of the DNA-dependent protein kinase (DNA-PK) in uninfected and adenovirus-infected nuclear extracts. Further, we show that L4-33K is highly phosphorylated by DNA-PK in vitro in a double stranded DNA-independent manner. Importantly, DNA-PK deficient cells show an enhanced production of the L1-IIIa mRNA suggesting an inhibitory role of DNA-PK on the temporal switch in L1 alternative RNA splicing. Moreover, we show that L4-33K also is phosphorylated by protein kinase A (PKA), and that PKA has an enhancer effect on L4-33K-stimulated L1-IIIa splicing. Hence, we demonstrate that these kinases have opposite effects on L4-33K function; DNA-PK as an inhibitor and PKA as an activator of L1-IIIa mRNA splicing. Taken together, this is the first report identifying protein kinases that phosphorylate L4-33K and to suggest novel regulatory roles for DNA-PK and PKA in adenovirus alternative RNA splicing

    Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks

    Get PDF
    A new paradigm has recently emerged in brain science whereby communications between glial cells and neuron-glia interactions should be considered together with neurons and their networks to understand higher brain functions. In particular, astrocytes, the main type of glial cells in the cortex, have been shown to communicate with neurons and with each other. They are thought to form a gap-junction-coupled syncytium supporting cell-cell communication via propagating Ca2+ waves. An identified mode of propagation is based on cytoplasm-to-cytoplasm transport of inositol trisphosphate (IP3) through gap junctions that locally trigger Ca2+ pulses via IP3-dependent Ca2+-induced Ca2+ release. It is, however, currently unknown whether this intracellular route is able to support the propagation of long-distance regenerative Ca2+ waves or is restricted to short-distance signaling. Furthermore, the influence of the intracellular signaling dynamics on intercellular propagation remains to be understood. In this work, we propose a model of the gap-junctional route for intercellular Ca2+ wave propagation in astrocytes showing that: (1) long-distance regenerative signaling requires nonlinear coupling in the gap junctions, and (2) even with nonlinear gap junctions, long-distance regenerative signaling is favored when the internal Ca2+ dynamics implements frequency modulation-encoding oscillations with pulsating dynamics, while amplitude modulation-encoding dynamics tends to restrict the propagation range. As a result, spatially heterogeneous molecular properties and/or weak couplings are shown to give rise to rich spatiotemporal dynamics that support complex propagation behaviors. These results shed new light on the mechanisms implicated in the propagation of Ca2+ waves across astrocytes and precise the conditions under which glial cells may participate in information processing in the brain.Comment: Article: 30 pages, 7 figures. Supplementary Material: 11 pages, 6 figure

    Near Field Scanning Optical Microscopy (NSOM): Development and Biophysical Applications

    Get PDF
    A new method for high-resolution imaging, near-field scanning optical microscopy (NSOM), has been developed. The concepts governing this method are discussed, and the technical challenges encountered in constructing a working NSOM instrument are described. Two distinct methods are presented for the fabrication of well-characterized, highly reproducible, subwavelength apertures. A sample one-dimensional scan is provided and compared to the scanning electron micrograph of a test pattern. From this comparison, a resolution of > 1,500 Å (i.e., ≃λ/3.6) is determined, which represents a significant step towards our eventual goal of 500 Å resolution. Fluorescence has been observed through apertures smaller than 600 Å and signal-to-noise calculations show that fluorescent imaging should be feasible. The application of such imaging is then discussed in reference to specific biological problems. The NSOM method employs nonionizing visible radiation and can be used in air or aqueous environments for nondestructive visualization of functioning biological systems with a resolution comparable to that of scanning electron microscopy
    corecore