2,545 research outputs found

    Spin-charge separation in Aharonov-Bohm rings of interacting electrons

    Get PDF
    We investigate the properties of strongly correlated electronic models on a flux-threaded ring connected to semi-infinite free-electron leads. The interference pattern of such an Aharonov-Bohm ring shows sharp dips at certain flux values, determined by the filling, which are a consequence of spin-charge separation in a nanoscopic system.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Superconductivity with s and p-symmetries in an extended Hubbard model with correlated hopping

    Full text link
    We consider a generalized Hubbard model with on-site and nearest-neighbour repulsions U and V respectively, and nearest-neighbour hopping for spin up (down) which depends on the total occupation n_b of spin down (up) electrons on both sites involved. The hopping parameters are t_{AA}, t_{AB} and t_{BB} for n_b=0,1,2 respectively. We briefly summarize results which support that the model exhibits s-wave superconductivity for certain parameters and extend them by studying the Berry phases. Using a generalized Hartree-Fock(HF) BCS decoupling of the two and three-body terms, we obtain that at half filling, for t_{AB}<t_{AA}=t_{BB} and sufficiently small U and V the model leads to triplet p-wave superconductivity for a simple cubic lattice in any dimension. In one dimension, the resulting phase diagram is compared with that obtained numerically using two quantized Berry phases (topological numbers) as order parameters. While this novel method supports the previous results, there are quantitative differences.Comment: Latex file, 14 pages, 2 postscript figure

    Application of ERTS-1 Imagery to Flood Inundation Mapping

    Get PDF
    Application of ERTS-1 imagery to flood inundation mapping in East and West Nishnabotna basins of southwestern Iow

    Critical behavior of the S=3/2 antiferromagnetic Heisenberg chain

    Full text link
    Using the density-matrix renormalization-group technique we study the long-wavelength properties of the spin S=3/2 nearest-neighbor Heisenberg chain. We obtain an accurate value for the spin velocity v=3.8+- 0.02, in agreement with experiment. Our results show conclusively that the model belongs to the same universality class as the S=1/2 Heisenberg chain, with a conformal central charge c=1 and critical exponent eta=1Comment: RevTeX (version 3.0), 4 twocolumn pages with 4 embedded figure

    Spin-spin correlations between two Kondo impurities coupled to an open Hubbard chain

    Get PDF
    In order to study the interplay between Kondo and Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, we calculate the spin-spin correlation functions between two Kondo impurities coupled to different sites of a half-filled open Hubbard chain. Using the density-matrix renormalization group (DMRG), we re-examine the exponents for the power-law decay of the correlation function between the two impurity spins as a function of the antiferromagnetic coupling J, the Hubbard interaction U, and the distance R between the impurities. The exponents for finite systems obtained in this work deviate from previously published DMRG calculations. We furthermore show that the long-distance behavior of the exponents is the same for impurities coupled to the bulk or to both ends of the chain. We note that a universal exponent for the asymptotic behavior cannot be extracted from these finite-size systems with open boundary conditions.Comment: 8 pages, 10 figures; v2: final version, references and Fig. 8 adde

    Quantum correlations in nanostructured two-impurity Kondo systems

    Get PDF
    We study the ground-state entanglement properties of nanostructured Kondo systems consisting of a pair of impurity spins coupled to a background of confined electrons. The competition between the RKKY-like coupling and the Kondo effect determines the development of quantum correlations between the different parts of the system. A key element is the electronic filling due to confinement. An even electronic filling leads to results similar to those found previously for extended systems, where the properties of the reduced impurity-spin subsystem are uniquely determined by the spin correlation function defining a one-dimensional phase space. An odd filling, instead, breaks spin-rotation symmetry unfolding a two-dimensional phase space showing rich entanglement characteristics as, e.g., the requirement of a larger amount of entanglement for the development of non-local correlations between impurity spins. We check these results by numerical simulations of elliptic quantum corrals with magnetic impurities at the foci as a case study.Comment: Submitted for publication. 8 pages, 4 figures. Revised versio
    • …
    corecore