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We study the ground-state entanglement properties of nanostructured Kondo systems consisting of a pair of
impurity spins coupled to a background of confined electrons. The competition between the Ruderman-Kittel-
Kasuya-Yosida-like coupling and the Kondo effect determines the development of quantum correlations between
the different parts of the system. A key element is the electronic filling due to confinement. An even electronic
filling leads to results similar to those found previously for extended systems, where the properties of the reduced
impurity spin subsystem are uniquely determined by the spin-correlation function defining a one-dimensional
phase space. An odd filling, instead, breaks spin rotation symmetry unfolding a two-dimensional phase space
showing rich entanglement characteristics as, e.g., the requirement of a larger amount of entanglement for the
development of nonlocal correlations between impurity spins. We illustrate these results by numerical simulations
of elliptic quantum corrals with magnetic impurities at the foci as a case study.
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I. INTRODUCTION

In the last decades, the emergence of quantum information1

raised a singular outlook in the physical sciences towards
the development of a solid-state quantum engineering.2 This
was supported by the contemporary progress of mesoscopic
physics, where the modern laboratory techniques gave a
comprehensive access to quantum phenomena in solid-state
structures at the nanoscale. Presently, many efforts are devoted
to the design of nanostructured devices for the controlled
manipulation of light and matter in the search for functional
quantum phenomena. A paradigmatic example is quantum
entanglement, nonlocal correlations considered a precious
resource for quantum-information processing.

Among the artificial nanostructures stand out the so-called
quantum corrals. These are arrays of adatoms deposited on
the surface of nobel metals, forming a nearly closed structure
within which surface electrons can remain confined. Quantum
corrals have allowed the observation of outstanding effects
such as quantum mirages,3,4 where the introduction of an
impurity on one of the foci of an elliptic structure forms a ghost
image in the empty one.5 Several authors have analyzed these
experiments with one or more impurities considering different
configurations.4–16 It was suggested that two impurities which
are located at the foci of the system will interact strongly
as a consequence of the focalizing properties of quantum
elliptic corrals.5,15–17 (Alternative locations apart from the
foci were also suggested18 for the production of quantum mi-
rages.) This depends on the competition between Ruderman-
Kittel-Kasuya-Yosida (RKKY) and Kondo interactions.19,20 A
preliminary study of quantum entanglement in such systems
was done in Ref. 17. There, it was found that the localized
spins develop a strong mutual entanglement for a small su-
perexchange coupling to the surface electronic states, whereas
they disentangle for a strong coupling (when compared to the
corresponding Kondo temperature).

These results suggest that quantum corrals are suitable
for essaying possible applications in quantum information
and spintronics.21 For instance, magnetic impurities added

on the foci could be used as quantum units of information
(qubits) where quantum correlations (entanglement) mediated
by delocalized electronic states are favored by focusing
and confinement effects.15–17 Eventually, quantum corrals
could serve as elementary prototypes for quantum-information
processors provided that logical gates can be implemented
by controlled manipulation of the interaction between the
magnetic qubits.22

Here we study the entanglement developed between
two magnetic impurities embedded in a confined electronic
environment. This corresponds to a nanostructured Kondo
system, where localized magnetic impurities are subject to
an effective (RKKY-like23) exchange interaction mediated by
electron-in-a-box states coupled antiferromagnetically to the
impurities. The key element in our discussion is the electron
confinement.24 Here, in contrast to extended systems with
electrons organized in a Fermi sea,25 the strength of the
quantum correlations is determined by the electron filling. For
an extended Kondo model, the ground state of the composed
two-impurity/electron system forms a spin singlet.26 Cho and
McKenzie25 have shown that this reduces the two-impurity
subsystem to a (mixed) rotationally invariant Werner state.27

This is a particular family of (mainly mixed) states charac-
terized by a single parameter identified with the impurity
spin-correlation function, defining a one-dimensional phase
space running continuously from a fully uncorrelated classical
ensemble to a fully entangled (singlet) state. We shall see
that confined Kondo systems with even electronic filling share
similar properties. An odd electronic filling, instead, takes the
two-impurity subsystem away from the Werner-state family to
a region of the Hilbert space with broken rotational symmetry
and richer entanglement characteristics. Such an extended
family cannot be fully described by a single observable.
Instead, as we shall see, it unfolds a two-dimensional phase
space.

Moreover, it is known that entanglement does not guarantee
nonlocality: while the former refers to the (non)separability of
a quantum state, the latter is defined only by the violation
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of Bell-like inequalities (meaning that quantum correlations
cannot be modeled by a hidden classical-variable theory).
Within the Werner-state family, indeed, there exists a subclass
of entangled states which do not violate Bell’s inequalities.
The development of nonlocality requires us to overcome a
minimal amount of entanglement (measured in terms of, e.g.,
the concurrence28). We shall see that an odd electronic filling
generally constrains the impurity spin system to develop a
larger amount of entanglement for the violation of Bell’s
inequalities when compared to the case of even electronic
filling.

The work is organized as follows. In Sec. II we discuss
the role played by the electronic filling on the reduced
impurity spin system based on symmetry arguments, only.
In Sec. III we introduce a phase-space diagram classifying
the entanglement properties of the impurity spin system
and discuss the conditions necessary for the development of
nonlocal correlations. Furthermore, in Sec. IV we study the
complementary entanglement arising between the impurity
spins and a confined electronic bath. Finally, in Sec. V
we present numerical results corresponding to Kondo-model
simulations for an elliptic quantum corral discussing the
distribution of solutions over the entanglement phase-space
diagram.

II. THE INFLUENCE OF THE ELECTRONIC STATES
ON THE IMPURITY SPIN SYSTEM

A. Full (pure) electron/impurity state

We start by considering a generic pure state |�〉 of the
composed system ABC with a definite z projection of the
total spin Sz

T, where A and B name the impurity spins and
C identifies a set of N electrons confined within an arbitrary
nanoscopic system (see Fig. 1 for the particular case of a
quantum corral):

|�〉 = a1| ↑↑〉|�1〉 + a2|↑↓〉|�2〉
+ a3|↓↑〉|�3〉 + a4|↓↓〉|�4〉. (1)

Here, the first ket of each term represents the two-impurity
spin subsystem while the |�n〉 are N -particle electronic states

C
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FIG. 1. (Color online) Nanostructured Kondo system: The figure
depicts two magnetic impurities A and B on the foci of an elliptic
quantum corral. Confined electronic states C of a given filling couple
antiferromagnetically to the impurity spins, developing either local
Kondo states or RKKY-like superexchange between impurity spins
depending on the coupling strength J .

of the form

|�1〉 =
∑

n

φ1
n|γ −

n 〉, (2)

|�2〉 =
∑

n

φ2
n

∣∣γ 0
n

〉
, (3)

|�3〉 =
∑

n

φ3
n

∣∣γ 0
n

〉
, (4)

|�4〉 =
∑

n

φ4
n|γ +

n 〉. (5)

The sets {|γ −
n 〉}, {|γ 0

n 〉}, and {|γ +
n 〉} are orthonormal bases of

N -electron states with z projection of the spin Sz
e = Sz

T − 1, Sz
T,

and Sz
T + 1, respectively, where Sz

T (total z component of the
spin, including impurities) has a definite value. The electronic
states |�n〉 are such that 〈�1|�n〉 = δ1n and 〈�4|�n〉 = δ4n,
while 〈�2|�3〉 �= 0 in general since both states belong to the
same spin subspace. Without loss of generality, in Eq. (1) we
assume real and positive probability amplitudes an such that∑

n a2
n = 1.

The symmetry properties of |�〉 upon spin rotation depend
on the electronic filling N , a constraint for the total spin.
For an even electron number, the ground state of the anti-
ferromagnetic Kondo model for the composed ABC system
is a spin singlet, invariant under joint spin rotation.25,26 The
situation changes for an odd electron number, where total spin
is a half integer. This is reflected in the reduced two-impurity
spin system AB with striking consequences on quantum
correlations, as we shall discuss.

B. Reduced two-impurity spin-density matrix

The reduced (mixed) 4 × 4 density matrix for the localized
spins ρAB is obtained by tracing out the electronic degrees of
freedom C from the full (pure) density matrix ρ = |�〉〈�|. In
the ordered basis {|↑↑〉,|↑↓〉,|↓↑〉,|↓↓〉} that yields

ρAB =

⎛
⎜⎜⎜⎝

a2
1 0 0 0

0 a2
2 a2a3〈�3|�2〉 0

0 a2a3〈�3|�2〉∗ a2
3 0

0 0 0 a2
4

⎞
⎟⎟⎟⎠ . (6)

We first notice that ρAB does not mix impurity states with
different spin projection. This results from assuming that both
the electron number and the projection of the total spin along
the z axis are good quantum numbers. Further consequences
follow from considering those symmetry constraints present in
(though not limited to) elliptic quantum corrals with magnetic
impurities at the foci. The reflection symmetry along the
minor axis implies that ρAB must be invariant under magnetic
impurity interchange. This means ρAB = ρBA, with a2 = a3

and 〈�3|�2〉 = 〈�3|�2〉∗ ≡ cos ϕ, where the phase 0 � ϕ �
π parametrizes the overlap between |�2〉 and |�3〉. Under such
symmetry constraints, Eq. (6) reduces to

ρAB =

⎛
⎜⎜⎜⎝

1 − 2a2
2 − a2

4 0 0 0

0 a2
2 a2

2 cos ϕ 0

0 a2
2 cos ϕ a2

2 0

0 0 0 a2
4

⎞
⎟⎟⎟⎠ , (7)
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with 0 � a2
1 = 1 − 2a2

2 − a2
4 � 1, 0 � a2

2 � 1/2, and 0 �
a2

4 � 1. Notice that orthogonal electronic components |�2〉
and |�3〉 (cos ϕ = 0) would lead to vanishing coherence
(off-diagonal) terms in ρAB . This would prevent the impurity
spins from developing mutual quantum correlations such as
entanglement (see Sec. III for a detailed discussion).

By observing the central 4 × 4 block of matrix Eq. (7), we
notice that ρAB can be expanded as

ρAB = (
1 − 2a2

2 − a2
4

)|↑↑〉〈↑↑| + a2
4 |↓↓〉〈↓↓|

+ a2
2

2

∑
δ=±1

(1 + δ cos ϕ)|ψδ〉〈ψδ|, (8)

where |ψ±〉 = (|↑↓〉 ± |↓↑〉)/√2 are fully entangled triplet
(+) and singlet (−) Bell states. Interestingly, pure triplet and
singlet states are possible for a2

2 = 1/2 (implying a1 = a4 =
0) provided that cos ϕ = ±1, respectively.

C. Hilbert-Schmidt decomposition and
Werner-state component

It is helpful to rewrite Eq. (7) by introducing the Hilbert-
Schmidt decomposition1

ρAB = 1

4

∑
α,β=0,x,y,z

rαβσ α
A ⊗ σ

β

B (9)

with physical observables

rαβ = Tr
(
σα

Aσ
β

B ρAB

) ∈ R, (10)

where σ 0
j ≡ 1j and σ ν

j are the 2 × 2 identity and Pauli
matrices, respectively (j = A,B and ν = x,y,z). By assuming
invariance under magnetic impurity interchange and spin
rotation symmetry around the z axis, Eq. (9) reduces to

ρAB = 1

4

⎛
⎜⎜⎜⎝

1 + rzz + 2r0z 0 0 0

0 1 − rzz 2rxx 0

0 2rxx 1 − rzz 0

0 0 0 1 + rzz − 2r0z

⎞
⎟⎟⎟⎠ ,

(11)

where we find rxx = ryy = 2a2
2 cos ϕ, rzz = 1 − 4a2

2 , and r0z =
1 − 2(a2

2 + a2
4) by direct comparison with Eq. (7).

When the interaction between electron and impurity spins
is antiferromagnetic and isotropic, the ground state of the
composed ABC system, |�G〉, is either a spin singlet or
a doublet according to the electronic filling (even or odd,
respectively). In any of these cases the reduced density matrix
of Eq. (11) satisfies rxx = rzz = r29 (an rxx �= rzz, instead, is
still possible for excited states). Under such conditions we can
conveniently write

ρAB = ρW
AB + �AB, (12)

with

ρW
AB = 1

4

(
14×4 + r

∑
α=x,y,z

σ α
A ⊗ σα

B

)
, (13)

�AB = r0z

4

(
σ z

A ⊗ 1B + 1A ⊗ σ z
B

)
. (14)

Here, ρW
AB is a Werner-state density matrix.25,27 This is most

commonly written as

ρW
AB = 1 − ps

3
14×4 + 4ps − 1

3
|�−〉〈�−|, (15)

parametrized by the so-called singlet fidelity ps ≡
〈�−|ρW

AB |�−〉 = (1 − 3r)/4 with 0 � ps � 1. Remarkably,
ρW

AB is determined by one single observable: the spin-
spin-correlation function 〈SA · SB〉 = 3r/4 = 1/4 − ps, with
−3/4 � 〈SA · SB〉 � 1/4. The �AB of Eq. (14), instead, is a
traceless contribution to ρAB (namely, it is not a density matrix
itself) determined only by the z projection of the impurity
spin, since r0z = 〈Sz

A + Sz
B〉. The ρAB is then fully determined

by two observables, only: 〈SA · SB〉 and 〈Sz
A + Sz

B〉. This is
a consequence of the setting rxx = rzz. Otherwise, 〈SA · SB〉
and 〈Sz

A + Sz
B〉 would not be sufficient to determine ρAB

completely, providing only a partial tomography of the
quantum state. For 〈Sz

A + Sz
B〉 = 0, ρAB reduces to a Werner

state. This is the case when the full (impurity/electron) state
is a singlet, as discussed in Ref. 25. A 〈Sz

A + Sz
B〉 �= 0 takes

ρAB away from the Werner-state subspace modifying the
entanglement features (see Sec. III for a detailed discussion).

The setting rxx = rzz also introduces some constraints on
the electronic parameters of Eq. (7). By noticing that rxx =
2a2

2 cos ϕ and rzz = 1 − 4a2
2 , we find cos ϕ = −2 + 1/2a2

2
with 1/6 � a2

2 � 1/2. This allows the development of pure
singlets |ψ−〉 for a2

2 = 1/2 at the same time it forbids pure
triplets |ψ+〉 [see Eq. (8)]. For a2

2 = 1/4, instead, all coherence
terms in Eq. (7) vanish together with cos ϕ.

D. Relation between 〈SA · SB〉 and 〈Sz
A + Sz

B〉
While the observables 〈SA · SB〉 and 〈Sz

A + Sz
B〉 are in prin-

ciple independent, the introduction of symmetry constraints
can restrict such freedom. However, symmetry alone is not
sufficient for determining the ultimate relation between them.
This, as expected, is eventually given by the full Hamiltonian.

From Eqs. (7) and (11) we find 〈SA · SB〉 = (2rxx +
rzz)/4 = 1/4 + (cos ϕ − 1)a2

2 and 〈Sz
A + Sz

B〉 = r0z = 1 −
2(a2

2 + a2
4). The condition rxx = rzz yields〈

Sz
A + Sz

B

〉 = 1
2 + 2

3 〈SA · SB〉 − 2a2
4

= − 1
2 − 2

3 〈SA · SB〉 + 2a2
1 . (16)

This equation is obtained from the application of symmetry
constraints, only. From it we can identify several scenarios.
For the symmetric case a2

1 = a2
4 we find 〈Sz

A + Sz
B〉 = 0 while

〈SA · SB〉 runs freely from −3/4 to 1/4. This corresponds
to the Werner state ρAB = ρW

AB discussed in Ref. 25 [see
Eq. (12)]. We further see that when either a2

1 or a2
4 equals

zero the relation between 〈SA · SB〉 and 〈Sz
A + Sz

B〉 must be
linear. Otherwise, they are free to develop a more general
nonlinear behavior which must be determined by solving
the Hamiltonian equation. We illustrate this in the following
section.

III. ENTANGLEMENT IN THE REDUCED SPIN SYSTEM

A. Concurrence and phase-space representation

A standard measure of the entanglement between two 1/2
spins or qubits is the concurrence C.28 This runs from zero for
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FIG. 2. (Color online) Phase-space diagram for the reduced impu-
rity spin system AB: The figure classifies the entanglement properties
of ρAB according to Eq. (18), parametrized by the observables
〈Sz

A + Sz
B〉 and 〈SA · SB〉. Curve 1 along 〈Sz

A + Sz
B〉 = 0 corresponds

to Werner states. Curve 2 defines the critical limit separating entangled
from disentangled states, along which the concurrence C vanishes.
Curve 3 marks the limit for physically possible states compatible with
the symmetry constraints. Curve 4 indicates a subspace of entangled,
mixed triplet states. Curve H corresponds to numerical simulations
on an elliptic quantum corral for an odd filling.

separable (disentangled) states to one for maximally entangled
(Bell) states. For the reduced two-impurity spin-density matrix
ρAB of Eq. (11) we find a concurrence:

C(ρAB) = max
{|rxx | − 1

2

√
(1 + rzz)2 − 4r2

0z,0
}
. (17)

This can be fully determined by 〈SA · SB〉 and 〈Sz
A + Sz

B〉
provided that rxx = rzz, reducing to

C(ρAB) = max
{

4
3 |〈SA · SB〉|

− 1
2

√(
4
3 〈SA · SB〉 + 1

)2 − 4
〈
Sz

A + Sz
B

〉2
,0

}
. (18)

In Fig. 2 we depict a phase-space diagram classifying
the entanglement properties of the ρAB given in Eq. (12)
as a function of 〈SA · SB〉 and 〈Sz

A + Sz
B〉. The shaded area

corresponds to the entangled phase with C > 0, according to
Eq. (18). This region is defined between curve 2, 〈SA · SB〉 =
−1/4 + (1 − √

1 − 3〈Sz
A + Sz

B〉2)/2, and curve 3, 〈SA · SB〉 =
−3/4 + (3/2)|〈Sz

A + Sz
B〉|, along which C = 0 and |2|〈Sz

A +
Sz

B〉| − 1|, respectively. The region defined above curve 2, 〈SA ·
SB〉 � −1/4 + (1 − √

1 − 3〈Sz
A + Sz

B〉2)/2, encloses the sub-
space of separable states (C = 0). The region below curve 3,
〈SA · SB〉 < −3/4 + (3/2)|〈Sz

A + Sz
B〉|, instead, corresponds

to unphysical states with imaginary concurrence.30 For 〈Sz
A +

Sz
B〉 = 0, Eq. (18) reduces to the well-known concurrence

for Werner states C(ρW
AB) = max{2ps − 1 = −(1/2 + 2〈SA ·

SB〉),0} (see Sec. II C). This family of states is represented
in the phase-space diagram of Fig. 2 by curve 1 (dashed
line), where the value 〈SA · SB〉c = −1/4 (pc

s = 1/2) defines a
critical point separating entangled from product Werner states.

Maximum entanglement (C = 1) is reached only at a single
point (〈Sz

A + Sz
B〉 = 0, 〈SA · SB〉 = −3/4) corresponding to

the singlet |ψ−〉, from which C decreases monotonously (even-
tually vanishing) as 〈SA · SB〉 approaches zero. From there on,
C increases again up to C = 1/3 − √

4/9 − 〈Sz
A + Sz

B〉2 for

〈SA · SB〉 = 1/4 and 1/
√

3 � |〈Sz
A + Sz

B〉| � 2/3 (segment 4
in Fig. 2), corresponding to mixed triplet states (i.e., incoherent
superpositions of |ψ+〉, |↑↑〉, and |↓↓〉). We then conclude
that, remarkably, a 〈Sz

A + Sz
B〉 �= 0 allows for entanglement

beyond the limit imposed to Werner states, namely, C > 0 for
〈SA · SB〉 > −1/4.

B. Violation of Bell inequalities

The presence of quantum entanglement does not guarantee
the development of the nonlocal quantum correlations present
in maximally entangled (Bell) states as, e.g., the spin singlet.
Nonlocality is properly identified through the (violation
of) Bell-Clauser-Horne-Shimony-Holt (CHSH) inequalities.31

Some entangled (nonseparable) states can certainly satisfy
Bell-CHSH inequalities: a well-known example is the Werner
states with −3/4

√
2 � 〈SA · SB〉 < −1/4 (1/2 < ps � (1 +

3/
√

2)/4).32 This means that, in such states, the statistical
properties ascribed to the entanglement can be reproduced by
using a hidden variable model, i.e., quantum features can be
modeled classically.

Following the criteria introduced in Ref. 32, we find that
the ρAB of Eq. (12) violates the corresponding Bell-CHSH
inequality for 〈SA · SB〉 < −3/4

√
2. Surprisingly, this upper

bound coincides with the result found for Werner states. How-
ever, the presence of a finite 〈Sz

A + Sz
B〉 has some consequences

on the minimal amount of entanglement (measured in terms
of concurrence) needed for violating the inequality. By setting
〈SA · SB〉 = −3/4

√
2 ≈ −0.53 in Eq. (18), we find

C|〈SA·SB 〉= −3
4
√

2
= 1√

2
− 1

2

√(
1 − 1√

2

)2

− 4
〈
Sz

A + Sz
B

〉2
. (19)

Here we see that the minimal concurrence required for violat-
ing the Bell-CHSH inequality runs from C = 3/2

√
2 − 1/2 ∼

0.561 for Werner states (〈Sz
A + Sz

B〉 = 0) to C = 1/
√

2 ≈
0.707 (|〈Sz

A + Sz
B〉| = (1 − 1/

√
2)/2 ≈ 0.146) (see Fig. 3).

This means that states with a finite 〈Sz
A + Sz

B〉 require a larger

 1

 0

 1/4

S+S zz
A B

. S
S

B
A

unphysical
states

unphysical

local
non

separable
states

localstates

−3/4
 1/2

−1/4

−1/2

C=0.707 0.707C=
−0.53

0.561C=

−0.146 0.146−1/2  0−1

FIG. 3. (Color online) Locality vs nonlocality in the reduced
impurity spin system: The value 〈SA · SB〉 = −3/4

√
2 ≈ −0.53

determines a critical limit separating entangled states subject to
nonlocal correlations (violating Bell-like inequalities) from those
compatible with a local hidden-variable model (satisfying Bell-like
inequalities). The minimal amount of entanglement required for the
development of nonlocal correlations increases with |〈Sz

A + Sz
B〉|.
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amount of entanglement for violating locality than Werner
states.

IV. ENTANGLEMENT BETWEEN IMPURITY SPINS AND
CONFINED ELECTRON

Entanglement in a quantum system depends on the partition
choice, namely, on the particular (pair of) subsystems under
study. We now explore the entanglement developed between
the impurity spins and the electronic subsystems. A good
measure of this entanglement is the von Neumann entropy E

of the reduced impurity spin-density matrix ρAB ,1,33 defined
as

E(ρAB) = −
4∑

n=1

ωn log2 ωn, (20)

where

ω1 = 1
4 + 1

3 〈SA · SB〉 + 1
2

〈
Sz

A + Sz
B

〉
,

ω2 = 1
4 + 1

3 〈SA · SB〉 − 1
2

〈
Sz

A + Sz
B

〉
,

ω3 = 1
4 − 1

3 〈SA · SB〉 + 2
3 |〈SA · SB〉|,

ω4 = 1
4 − 1

3 〈SA · SB〉 − 2
3 |〈SA · SB〉|

are the eigenvalues of ρAB . The E(ρAB) runs from zero
for separable states to two for maximally entangled states.
Absolute maxima and minima of E(ρAB) are found along
the curve defined by 〈Sz

A + Sz
B〉 = 0 at points 〈SA · SB〉 =

0 and 〈SA · SB〉 = −3/4, respectively (see Fig. 4). This
coincides with what was found in the case of global impurity
spin/electron singlet states,25 where E(ρAB) = 2 indicates the
formation of local Kondo singlets between impurity spins and
electrons. E(ρAB) = 0 corresponds to the development of an
impurity spin singlet separated from the electronic system. The
introduction of a finite 〈Sz

A + Sz
B〉 produces a decorrelation

between impurity spins and electrons, reducing the amount of
entanglement E(ρAB) as shown in Fig. 4. Such decorrelation,
however, is not complete (except in the vicinity of the impurity

AB

S

(ρ  )

+
BA

E

S Sz z

A S. B

FIG. 4. (Color online) Entanglement between confined electrons
and impurity spins given by the von Neumann entropy E(ρAB ) of
Eq. (20) parametrized by the observables 〈Sz

A + Sz
B〉 and 〈SA · SB〉.

Broken-line and solid curves correspond to numerical simulations on
an elliptic quantum corral for even and odd electrons, respectively.

spin singlet), so that we can generally claim that the impurity
spin subsystem shows a relatively high correlation with the
electronic degrees of freedom.

Complementary information can be obtained by quantify-
ing the entanglement of one single impurity spin with the rest of
the system. This can be done by calculating the von Neumann
entropy E of the reduced density matrix of the impurity spin
ρA (equivalent results are obtained for the impurity spin B).
We find

E(ρA) = −1 + 〈
Sz

A + Sz
B

〉
2

log2

1 + 〈
Sz

A + Sz
B

〉
2

− 1 − 〈
Sz

A + Sz
B

〉
2

log2

1 − 〈
Sz

A + Sz
B

〉
2

, (21)

where ρA = (σ 0
A + 〈Sz

A + Sz
B〉σ z

A)/2 is independent of the
correlation function 〈SA · SB〉. The E(ρA) is bounded between
zero (uncorrelated spin impurity) and one (fully entangled
spin impurity). Full entanglement of single impurity spins
is reached for 〈Sz

A + Sz
B〉 = 0, in agreement with previous

results for global impurity spin/electron singlet states.25 The
presence of a finite 〈Sz

A + Sz
B〉 decorrelates the single impurity

spins from the rest of the system. Full decorrelation (sepa-
ration) would require 〈Sz

A + Sz
B〉 = ±1. However, symmetry

constraints impose 〈Sz
A + Sz

B〉 � 2/3 (see Fig. 2), forcing the
entropy E(ρA) to be lower-bounded by a finite value close
to 0.65. This means that single impurity spins remain highly
correlated with the rest of the system even for odd electronic
filling.

V. NUMERICAL SIMULATIONS ON QUANTUM CORRALS

The results discussed above are valid for general two-
impurity models interacting with a confined electronic bath.
We now perform a case study of the entanglement features
for two impurities located at the foci of an elliptic corral
confining surface electrons. Each impurity interacts antifer-
romagnetically with the spin of the band electron located at
the corresponding focus (Fig. 1), modeled by the Hamiltonian:

H = He + J (SA · σA + SB · σB), (22)

with J > 0,

Si · σ i = Sz
i · σ z

i + 1
2 (S+

i · σ−
i + S−

i · σ+
i ), (23)

σ+
i = ci↑ci↓, and σ z

i = (ni↑ − ni↓)/2. Here, niσ and ciσ

are, respectively, the number and destruction operators for
electrons with spin σ on focus i = A,B. In the basis of
eigenstates |α〉 of the ellipse, these local operators can be
expanded as ciσ = ∑

α �αicασ where cασ and �αi are the
destruction operator and amplitude in state |α〉. In this basis
the electronic spin operators are expressed as

σ z
i = 1

2

∑
α1α2

�∗
α1i

�α2i

(
c
†
α1↑cα2↑ − c

†
α1↓cα2↓

)
,

(24)
σ+

i =
∑
α1α2

�∗
α1i

�α2ic
†
α1↑cα2↓.

The He in Eq. (22) accounts for electron confinement in an
ellipse with hard walls (eccentricity ε = 0.6 in numerical
simulations).15
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We perform many-body simulations of Eq. (22) applying
numerical techniques as exact diagonalization or Lanczos,
considering up to ten electronic levels in the ellipse and
different particle fillings N (either even or odd). For odd
electronic fillings we consider just the Sz

T = 1/2 subspace.
Results for Sz

T = −1/2 are equivalent due to up-down spin
symmetry (something reflected by the left-right symmetry
of Figs. 2–4). We also chose the Fermi energy to coincide
with the 23rd eigenstate |α23〉, reproducing the experimental
conditions of Ref. 3. This configuration is not crucial for
the main conclusions: other eccentricities and Fermi levels
show similar features as long as the wave function bears an
appreciable weight at the foci of the ellipse.

We first follow Eq. (16) by calculating numerically the
spin-correlation function, 〈SA · SB〉, and the z projection of the
localized spins, 〈Sz

A + Sz
B〉, for different values of the coupling

strength J . We find a coefficient a4 = 0 for small odd fillings
(N � 3) and a a4 �= 0 otherwise, leading to a nonlinear relation
between the observables. Results for ten levels and nine
particles are plotted in Fig. 2 (curve H represented by a broken
line). By following its route along the phase-space diagram
one observes the entanglement features of the impurity spin
subsystem under such conditions, running from separable
to entangled areas within the 〈SA · SB〉 > 0 region. More
complex behaviors are to be expected for less restrictive
symmetries as shown in Ref. 34. Results for even fillings are
indicated with a broken line coinciding with curve 1.

Finally, we quantify the entanglement developed between
the localized impurities and the electronic bath in the ellipse
based on Eq. (20). The results are depicted in Fig. 4: the
broken line for an even filling (ten levels and ten particles)
and the full line for an odd filling (ten levels and nine
particles). Here we notice that the entanglement monogamy35

is clearly satisfied by observing that a large entanglement
entropy between impurity spins and electrons corresponds to
a low concurrence between impurity spins, and vice versa.

VI. CONCLUSIONS

We have identified the ground-state entanglement proper-
ties of two magnetic impurities (1/2 spins or qubits) interacting
with confined electronic backgrounds by composing a phase
diagram for the classification of separable, entangled, and

unphysical states. This was done by studying the impurity
spin concurrence as a function of the spin-correlation function
and the z projection of the localized spins. Such quantum
correlations show a striking dependence on the electronic
filling: while an even filling reduces the impurity spin system
to a highly symmetric Werner state, an odd filling breaking
spin rotation invariance gives rise to richer features. We also
discussed the relation between entanglement and (non)locality
by studying the conditions for the violation of Bell inequalities
in the impurity spin system. Additionally, we obtained comple-
mentary information by studying the entanglement developed
between the the impurity spins and the electronic background.

As a case study, we performed corresponding numerical
simulations for elliptic quantum corrals consisting of a pair
of impurity spins located at the foci coupled antiferromag-
netically to a background of surface electrons confined by
the elliptic potential. By increasing the interaction parameter,
there exists a transition from an RKKY-like regime (where the
impurity spins are mutually entangled) to a localized Kondo-
like regime (where impurity spins decorrelate, developing a
strong entanglement with the electronic environment). We
notice that electron confinement may help to preserve quantum
correlations by protecting the impurity spin systems from
external fluctuations. Moreover, impurity spin correlations
could be accessible experimentally by implementing magnetic
scanning tunneling microscopy tips or similar devices. We
also expect these results to be valid for other kinds of
backgrounds such as spin chains. Quantum corrals offer
an ideal scenario to study entanglement between impurities
and corral wave functions or other possible partitions. This
quantum information interpretation is an alternative way of
analyzing crossovers between different quantum states and
sheds light onto other relevant properties stemming from
focalization and confinement.
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