42 research outputs found

    Intruder mobility in a vibrated granular packing

    Full text link
    We study experimentally the dynamics of a dense intruder sinking under gravity inside a vibrated 2D granular packing. The surrounding flow patterns are characterized and the falling trajectories are interpreted in terms of an effectivive friction coefficient related to the intruder mean descent velocity (flow rules). At higher confining pressures i.e. close to jamming, a transition to intermittent dynamics is evidenced and displays anomalous "on-off" blockade statistics. A systematic analysis of the flow rules, obtained for different intruder sizes, either in the flowing regime or averaged over the flowing and blockade regimes, strongly suggest the existence of non-local properties for the vibrated packing rheology.

    Forced motion of a probe particle near the colloidal glass transition

    Full text link
    We use confocal microscopy to study the motion of a magnetic bead in a dense colloidal suspension, near the colloidal glass transition volume fraction Ď•g\phi_g. For dense liquid-like samples near Ď•g\phi_g, below a threshold force the magnetic bead exhibits only localized caged motion. Above this force, the bead is pulled with a fluctuating velocity. The relationship between force and velocity becomes increasingly nonlinear as Ď•g\phi_g is approached. The threshold force and nonlinear drag force vary strongly with the volume fraction, while the velocity fluctuations do not change near the transition.Comment: 7 pages, 4 figures revised version, accepted for publication in Europhysics Letter

    Correlations between short- and long-time relaxation in colloidal supercooled liquids and glasses

    Get PDF
    Spatiotemporal dynamics of short- and long-time structural relaxation are measured experimentally as a function of packing fraction, φ, in quasi-two-dimensional colloidal supercooled liquids and glasses. The relaxation times associated with long-time dynamic heterogeneity and short-time intracage motion are found to be strongly correlated and to grow by orders of magnitude with increasing φ toward dynamic arrest. We find that clusters of fast particles on the two timescales often overlap, and, interestingly, the distribution of minimum-spatial-separation between closest nonoverlapping clusters across the two timescales is revealed to be exponential with a decay length that increases with φ. In total, the experimental observations suggest short-time relaxation events are very often precursors to heterogeneous relaxation at longer timescales in glassy materials

    Mobility and Diffusion of a Tagged Particle in a Driven Colloidal Suspension

    Full text link
    We study numerically the influence of density and strain rate on the diffusion and mobility of a single tagged particle in a sheared colloidal suspension. We determine independently the time-dependent velocity autocorrelation functions and, through a novel method, the response functions with respect to a small force. While both the diffusion coefficient and the mobility depend on the strain rate the latter exhibits a rather weak dependency. Somewhat surprisingly, we find that the initial decay of response and correlation functions coincide, allowing for an interpretation in terms of an 'effective temperature'. Such a phenomenological effective temperature recovers the Einstein relation in nonequilibrium. We show that our data is well described by two expansions to lowest order in the strain rate.Comment: submitted to EP

    Particle dynamics in colloidal suspensions above and below the glass-liquid re-entrance transition

    Full text link
    We study colloidal particle dynamics of a model glass system using confocal and fluorescence microscopy as the sample evolves from a hard-sphere glass to a liquid with attractive interparticle interactions. The transition from hard-sphere glass to attractive liquid is induced by short-range depletion forces. The development of liquid-like structure is indicated by particle dynamics. We identify particles which exhibit substantial motional events and characterize the transition using the properties of these motional events. As samples enter the attractive liquid region, particle speed during these motional events increases by about one order of magnitude, and the particles move more cooperatively. Interestingly, colloidal particles in the attractive liquid phase do not exhibit significantly larger displacements than particles in the hard-sphere glass

    Schematic Models for Active Nonlinear Microrheology

    Full text link
    We analyze the nonlinear active microrheology of dense colloidal suspensions using a schematic model of mode-coupling theory. The model describes the strongly nonlinear behavior of the microscopic friction coefficient as a function of applied external force in terms of a delocalization transition. To probe this regime, we have performed Brownian dynamics simulations of a system of quasi-hard spheres. We also analyze experimental data on hard-sphere-like colloidal suspensions [Habdas et al., Europhys. Lett., 2004, 67, 477]. The behavior at very large forces is addressed specifically

    Space-time Phase Transitions in Driven Kinetically Constrained Lattice Models

    Full text link
    Kinetically constrained models (KCMs) have been used to study and understand the origin of glassy dynamics. Despite having trivial thermodynamic properties, their dynamics slows down dramatically at low temperatures while displaying dynamical heterogeneity as seen in glass forming supercooled liquids. This dynamics has its origin in an ergodic-nonergodic first-order phase transition between phases of distinct dynamical "activity". This is a "space-time" transition as it corresponds to a singular change in ensembles of trajectories of the dynamics rather than ensembles of configurations. Here we extend these ideas to driven glassy systems by considering KCMs driven into non-equilibrium steady states through non-conservative forces. By classifying trajectories through their entropy production we prove that driven KCMs also display an analogous first-order space-time transition between dynamical phases of finite and vanishing entropy production. We also discuss how trajectories with rare values of entropy production can be realized as typical trajectories of a mapped system with modified forces

    Dynamics of an Intruder in Dense Granular Fluids

    Get PDF
    We investigate the dynamics of an intruder pulled by a constant force in a dense two-dimensional granular fluid by means of event-driven molecular dynamics simulations. In a first step, we show how a propagating momentum front develops and compactifies the system when reflected by the boundaries. To be closer to recent experiments \cite{candelier2010journey,candelier2009creep}, we then add a frictional force acting on each particle, proportional to the particle's velocity. We show how to implement frictional motion in an event-driven simulation. This allows us to carry out extensive numerical simulations aiming at the dependence of the intruder's velocity on packing fraction and pulling force. We identify a linear relation for small and a nonlinear regime for high pulling forces and investigate the dependence of these regimes on granular temperature

    The Physics of the Colloidal Glass Transition

    Full text link
    As one increases the concentration of a colloidal suspension, the system exhibits a dramatic increase in viscosity. Structurally, the system resembles a liquid, yet motions within the suspension are slow enough that it can be considered essentially frozen. This kinetic arrest is the colloidal glass transition. For several decades, colloids have served as a valuable model system for understanding the glass transition in molecular systems. The spatial and temporal scales involved allow these systems to be studied by a wide variety of experimental techniques. The focus of this review is the current state of understanding of the colloidal glass transition. A brief introduction is given to important experimental techniques used to study the glass transition in colloids. We describe features of colloidal systems near and in glassy states, including tremendous increases in viscosity and relaxation times, dynamical heterogeneity, and ageing, among others. We also compare and contrast the glass transition in colloids to that in molecular liquids. Other glassy systems are briefly discussed, as well as recently developed synthesis techniques that will keep these systems rich with interesting physics for years to come.Comment: 56 pages, 18 figures, Revie

    Quantitative imaging of concentrated suspensions under flow

    Full text link
    We review recent advances in imaging the flow of concentrated suspensions, focussing on the use of confocal microscopy to obtain time-resolved information on the single-particle level in these systems. After motivating the need for quantitative (confocal) imaging in suspension rheology, we briefly describe the particles, sample environments, microscopy tools and analysis algorithms needed to perform this kind of experiments. The second part of the review focusses on microscopic aspects of the flow of concentrated model hard-sphere-like suspensions, and the relation to non-linear rheological phenomena such as yielding, shear localization, wall slip and shear-induced ordering. Both Brownian and non-Brownian systems will be described. We show how quantitative imaging can improve our understanding of the connection between microscopic dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of methodology. Submitted for special volume 'High Solid Dispersions' ed. M. Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009); 22 pages, 16 fig
    corecore