32,072 research outputs found
Experimental investigation of feedforward control schemes of a flexible robot manipulator system
This paper presents experimental investigations into the applications of feedforward control schemes for vibration control of a flexible manipulator system. Feedforward control schemes based on input shaping and filtering techniques are to be examined. A constrained planar single-link flexible manipulator is considered in this experimental work. An unshaped bang-bang torque input is used to determine the characteristic parameters of the system for design and evaluation of the input shaping control techniques. The input shapers and filtering techniques are designed based on the properties of the system. Simulation results of the response of the manipulator to the shaped and filtered inputs are presented in time and frequency domains. Performances of the shapers are examined in terms of level of vibration reduction and time response specifications. The effects of derivative order of the input shaper on the performance of the system are investigated. Finally, a comparative assessment of the control strategies is presented and discusse
Robust vehicle suspension system by converting active and passive control of a vehicle to semi-active control ystem analytically
This research article deals with a simplified translational model of an automotive suspension system which is constructed by considering the translation motion of one wheel of a car. Passive Vehicle Suspension System is converted into Semi Active Vehicle System. Major advantage achieved by this system is that it adjusts the damping of the suspension system without the application of any actuator by using MATLAB® simulations. The semi-active control is found to control the vibration of suspension system very well
Hydrophobicity properties of graphite and reduced graphene oxide of the polysulfone (PSf) mixed matrix membrane
Hydrophobicity properties of graphite and reduced graphene oxide (rGO) (from exfoliated graphite/rGO) towards PSf polymer membrane characteristic and properties at different additives weight concentrations (1, 2, 3, 4 and 5 wt. %) were investigated. Both PSF/graphite and PSf/rGO membranes were characterized in term of hydrophobicity, surface bonding, surface roughness and porosity. FTIR peaks revealed that membrane with graphite and reduced graphene oxide nearly diminished their O-H bonding which was opposite to the graphene oxide peak that shows a strong O-H bonding as increased exfoliated times. These results were in line with the contact angle results that showed strong hydrophobicity of graphite and reduced graphene oxide membranes as increased these additives concentration. The effect of strong hydrophobicity in these membranes also has resulted in smoother surface roughness compared to pristine PSf membrane. Further investigation of the performance of water flux also proved that both above membranes have strong hydrophobic effect, with the lowest pure water flux rate (L/m2h) was given by PSf/rGO 3% membrane at 19.2437 L/m2h
Effect of equivalent salt deposit density on flashover voltage of contaminated insulator energized by HVDC
In Malaysia, the demand for electric power is increasing day by day due to more consumption of power in the industrial sector. Recently, the high voltage DC transmission lines are under construction near the coastal environments for transmitting the power to the all states of Malaysia. Therefore, there is a concern about the reliability of these systems especially under adverse environmental conditions due to sea salt spray contamination. This reliability of this contaminated insulator can be improved through its performance studies. For this performance study, an analytical expression between flashover voltage and ESDD of the contaminated insulator has been proposed using Dimensional Analysis technique. The results obtained from the analytical expression are compared with the experimental results and in close agreement are foun
Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells
In this work, the role of reduced graphene oxide (rGO) with hyperbranched surfactant and its hybridisation with multiwalled carbon nanotubes (MWCNTs) and platinum (Pt) nanoparticles (NPs) as counter electrode (CE) were investigated to determine the photovoltaic performance of dye-sensitised solar cells (DSSCs). Sodium 1,4-is(neopentyloxy)-3-(neopentyloxycarbonyl)- 1,4-dioxobutane-2-sulphonate (TC14) surfactant was utilised as dispersing and stabilising agent in electrochemical exfoliation to synthesise graphene oxide (GO) as initial solution for rGO production prior to its further hybridisation and fabrication as thin film. A chemical reduction process utilising hydrazine hydrate was conducted to produce rGO due to the low temperature
process and water-based GO solution. Subsequently, hybrid solution was prepared by mixing 1 wt% MWCNTs into the produced rGO solution. TC14-rGO and TC14-rGO_MWCNTs hybrid solution were transferred into fluorine-doped tin oxide substrate to fabricate thin film by spraying deposition method. Finally, the CE films were prepared by coating with thin Pt NPs. Photoanode film was prepared by a two-step process: hydrothermal growth method to synthesise titanium dioxide
nanowires (TiO2 NWs) and subsequent squeegee method to apply TiO2
NPs. According to solar simulator measurement, the highest energy conversion efficiency (η) was achieved by using CE-based TC14-rGO_MWCNTs/Pt (1.553%), with the highest short current density of 4.424 mA/cm2. The highest η was due to the high conductivity of CE hybrid film and the morphology of fabricated TiO2 NWs/TiO2 NPs. Consequently, the dye adsorption was high, and the photovoltaic performance of DSSCs was increased. This result also showed that rGO and rGO_MWCNTs hybrid can be used as considerable potential candidate materials to replace Pt gradually
Passively mode-locked laser using an entirely centred erbium-doped fiber
This paper describes the setup and experimental results for an entirely centred erbium-doped fiber laser with passively mode-locked output. The gain medium of the ring laser cavity configuration comprises a 3 m length of two-core optical fiber, wherein an undoped outer core region of 9.38 μm diameter surrounds a 4.00 μm diameter central core region doped with erbium ions at 400 ppm concentration. The generated stable soliton mode-locking output has a central wavelength of 1533 nm and pulses that yield an average output power of 0.33 mW with a pulse energy of 31.8 pJ. The pulse duration is 0.7 ps and the measured output repetition rate of 10.37 MHz corresponds to a 96.4 ns pulse spacing in the pulse train
Recommended from our members
The Differences in Antibiotic Decision-making Between Acute Surgical and Acute Medical Teams: An Ethnographic Study of Culture and Team Dynamics
Background
Cultural and social determinants influence antibiotic decision-making in hospitals. We investigated and compared cultural determinants of antibiotic decision-making in acute medical and surgical specialties.
Methods
An ethnographic observational study of antibiotic decision-making in acute medical and surgical teams at a London teaching hospital was conducted (August 2015–May 2017). Data collection included 500 hours of direct observations, and face-to-face interviews with 23 key informants. A grounded theory approach, aided by Nvivo 11 software, analyzed the emerging themes. An iterative and recursive process of analysis ensured saturation of the themes. The multiple modes of enquiry enabled cross-validation and triangulation of the findings.
Results
In medicine, accepted norms of the decision-making process are characterized as collectivist (input from pharmacists, infectious disease, and medical microbiology teams), rationalized, and policy-informed, with emphasis on de-escalation of therapy. The gaps in antibiotic decision-making in acute medicine occur chiefly in the transition between the emergency department and inpatient teams, where ownership of the antibiotic prescription is lost. In surgery, team priorities are split between 3 settings: operating room, outpatient clinic, and ward. Senior surgeons are often absent from the ward, leaving junior staff to make complex medical decisions. This results in defensive antibiotic decision-making, leading to prolonged and inappropriate antibiotic use.
Conclusions
In medicine, the legacy of infection diagnosis made in the emergency department determines antibiotic decision-making. In surgery, antibiotic decision-making is perceived as a nonsurgical intervention that can be delegated to junior staff or other specialties. Different, bespoke approaches to optimize antibiotic prescribing are therefore needed to address these specific challenges
Characteristics of Mineral Oil-based Nanofluids for Power Transformer Application
Trends in the field of nanomaterial-based transformer oil show most of the conducted works have focused only on the transformer oil-based nanofluids but limited studies on the stability of transformer oil-based nanofluids. Since mineral oil-based nanofluids still can produce the sedimentation, thus the cold-atmospheric pressure plasma method is proposed to functionally modify the Silicon Dioxide (SiO2) nanofiller in order to enhance the electrical properties of the mineral oil-based nanofluids. The AC breakdown strength oil samples before and after modification were measured. It was found that the plasma treated nanofluids have higher AC breakdown voltage compared to pure oil and untreated nanofluids. Also, Fourier Transform Infrared (FTIR) Spectroscopy has been used in this study to analyse the physical changes of oil samples. It is envisaged that the added silica nanofiller has significant effect on electrical properties of the transformer oil-based nanofluids which would enable to the development of an improved class of liquid dielectric for the application of power transformer
- …