3,770 research outputs found
Snapshots of the EYES project
The EYES project (IST-2001-34734) is a three years European research project on self-organizing and collaborative energy-efficient sensor networks. It addresses the convergence of distributed information processing, wireless communications, and mobile computing. The goal of the project is to develop the architecture and the technology which enables the creation of a new generation of sensors that can effectively network together so as to provide a flexible platform for the support of a large variety of mobile sensor network applications. This paper provides a broad overview of the EYES project and highlights some approaches and results of the architecture
Analysis of the effects of baffles on combustion instability
An analytical model has been developed for predicting the effects of baffles on combustion instability. This model has been developed by coupling an acoustic analysis of the wave motion within baffled chambers with a model for the oscillatory combustion response of a propellant droplet developed by Heidmann. A computer program was developed for numerical solution of the resultant coupled equations. Diagnostic calculations were made to determine the reasons for the improper prediction. These calculations showed that the chosen method of representing the combustion response was a very poor approximation. At the end of the program, attempts were made to minimize this effect but the model still improperly predicts the stability trends. Therefore, it is recommended that additional analysis be done with an improved approximation
Isomer triggering via nuclear excitation by electron capture
Triggering of long-lived nuclear isomeric states via coupling to the atomic
shells in the process of nuclear excitation by electron capture (NEEC) is
studied. NEEC occurring in highly-charged ions can excite the isomeric state to
a triggering level that subsequently decays to the ground state. We present
total cross sections for NEEC isomer triggering considering experimentally
confirmed low-lying triggering levels and reaction rates based on realistic
experimental parameters in ion storage rings. A comparison with other isomer
triggering mechanisms shows that, among these, NEEC is the most efficient.Comment: minor changes - updated to the final version; 4 pages, 1 figur
Superconductivity in Pseudo-Binary Silicide SrNixSi2-x with AlB2-Type Structure
We demonstrate the emergence of superconductivity in pseudo-binary silicide
SrNixSi2-x. The compound exhibits a structural phase transition from the cubic
SrSi2-type structure (P4132) to the hexagonal AlB2-type structure (P6/mmm) upon
substituting Ni for Si at approximately x = 0.1. The hexagonal structure is
stabilized in the range of 0.1 < x < 0.7. The superconducting phase appears in
the vicinity of the structural phase boundary. Ni acts as a nonmagnetic dopant,
as confirmed by the Pauli paramagnetic behavior.Comment: 12 pages, 5 figure
Two-mode single-atom laser as a source of entangled light
A two-mode single-atom laser is considered, with the aim of generating
entanglement in macroscopic light. Two transitions in the four-level gain
medium atom independently interact with the two cavity modes, while two other
transitions are driven by control laser fields. Atomic relaxation as well as
cavity losses are taken into account. We show that this system is a source of
macroscopic entangled light over a wide range of control parameters and initial
states of the cavity field
Multifractality of wavefunctions at the quantum Hall transition revisited
We investigate numerically the statistics of wavefunction amplitudes
at the integer quantum Hall transition. It is demonstrated that
in the limit of a large system size the distribution function of is
log-normal, so that the multifractal spectrum is exactly parabolic.
Our findings lend strong support to a recent conjecture for a critical theory
of the quantum Hall transition.Comment: 4 pages Late
Multifractality at the spin quantum Hall transition
Statistical properties of critical wave functions at the spin quantum Hall
transition are studied both numerically and analytically (via mapping onto the
classical percolation). It is shown that the index characterizing the
decay of wave function correlations is equal to 1/4, at variance with the
decay of the diffusion propagator. The multifractality spectra of
eigenfunctions and of two-point conductances are found to be
close-to-parabolic, and .Comment: 4 pages, 3 figure
Coherent control in a decoherence-free subspace of a collective multi-level system
Decoherence-free subspaces (DFS) in systems of dipole-dipole interacting
multi-level atoms are investigated theoretically. It is shown that the
collective state space of two dipole-dipole interacting four-level atoms
contains a four-dimensional DFS. We describe a method that allows to populate
the antisymmetric states of the DFS by means of a laser field, without the need
of a field gradient between the two atoms. We identify these antisymmetric
states as long-lived entangled states. Further, we show that any single-qubit
operation between two states of the DFS can be induced by means of a microwave
field. Typical operation times of these qubit rotations can be significantly
shorter than for a nuclear spin system.Comment: 15 pages, 11 figure
- …