3,770 research outputs found

    Snapshots of the EYES project

    Get PDF
    The EYES project (IST-2001-34734) is a three years European research project on self-organizing and collaborative energy-efficient sensor networks. It addresses the convergence of distributed information processing, wireless communications, and mobile computing. The goal of the project is to develop the architecture and the technology which enables the creation of a new generation of sensors that can effectively network together so as to provide a flexible platform for the support of a large variety of mobile sensor network applications. This paper provides a broad overview of the EYES project and highlights some approaches and results of the architecture

    Analysis of the effects of baffles on combustion instability

    Get PDF
    An analytical model has been developed for predicting the effects of baffles on combustion instability. This model has been developed by coupling an acoustic analysis of the wave motion within baffled chambers with a model for the oscillatory combustion response of a propellant droplet developed by Heidmann. A computer program was developed for numerical solution of the resultant coupled equations. Diagnostic calculations were made to determine the reasons for the improper prediction. These calculations showed that the chosen method of representing the combustion response was a very poor approximation. At the end of the program, attempts were made to minimize this effect but the model still improperly predicts the stability trends. Therefore, it is recommended that additional analysis be done with an improved approximation

    Isomer triggering via nuclear excitation by electron capture

    Full text link
    Triggering of long-lived nuclear isomeric states via coupling to the atomic shells in the process of nuclear excitation by electron capture (NEEC) is studied. NEEC occurring in highly-charged ions can excite the isomeric state to a triggering level that subsequently decays to the ground state. We present total cross sections for NEEC isomer triggering considering experimentally confirmed low-lying triggering levels and reaction rates based on realistic experimental parameters in ion storage rings. A comparison with other isomer triggering mechanisms shows that, among these, NEEC is the most efficient.Comment: minor changes - updated to the final version; 4 pages, 1 figur

    Superconductivity in Pseudo-Binary Silicide SrNixSi2-x with AlB2-Type Structure

    Full text link
    We demonstrate the emergence of superconductivity in pseudo-binary silicide SrNixSi2-x. The compound exhibits a structural phase transition from the cubic SrSi2-type structure (P4132) to the hexagonal AlB2-type structure (P6/mmm) upon substituting Ni for Si at approximately x = 0.1. The hexagonal structure is stabilized in the range of 0.1 < x < 0.7. The superconducting phase appears in the vicinity of the structural phase boundary. Ni acts as a nonmagnetic dopant, as confirmed by the Pauli paramagnetic behavior.Comment: 12 pages, 5 figure

    Two-mode single-atom laser as a source of entangled light

    Get PDF
    A two-mode single-atom laser is considered, with the aim of generating entanglement in macroscopic light. Two transitions in the four-level gain medium atom independently interact with the two cavity modes, while two other transitions are driven by control laser fields. Atomic relaxation as well as cavity losses are taken into account. We show that this system is a source of macroscopic entangled light over a wide range of control parameters and initial states of the cavity field

    Multifractality of wavefunctions at the quantum Hall transition revisited

    Get PDF
    We investigate numerically the statistics of wavefunction amplitudes ψ(r)\psi({\bf r}) at the integer quantum Hall transition. It is demonstrated that in the limit of a large system size the distribution function of ∣ψ∣2|\psi|^2 is log-normal, so that the multifractal spectrum f(α)f(\alpha) is exactly parabolic. Our findings lend strong support to a recent conjecture for a critical theory of the quantum Hall transition.Comment: 4 pages Late

    Multifractality at the spin quantum Hall transition

    Get PDF
    Statistical properties of critical wave functions at the spin quantum Hall transition are studied both numerically and analytically (via mapping onto the classical percolation). It is shown that the index η\eta characterizing the decay of wave function correlations is equal to 1/4, at variance with the r−1/2r^{-1/2} decay of the diffusion propagator. The multifractality spectra of eigenfunctions and of two-point conductances are found to be close-to-parabolic, Δq≃q(1−q)/8\Delta_q\simeq q(1-q)/8 and Xq≃q(3−q)/4X_q\simeq q(3-q)/4.Comment: 4 pages, 3 figure

    Coherent control in a decoherence-free subspace of a collective multi-level system

    Get PDF
    Decoherence-free subspaces (DFS) in systems of dipole-dipole interacting multi-level atoms are investigated theoretically. It is shown that the collective state space of two dipole-dipole interacting four-level atoms contains a four-dimensional DFS. We describe a method that allows to populate the antisymmetric states of the DFS by means of a laser field, without the need of a field gradient between the two atoms. We identify these antisymmetric states as long-lived entangled states. Further, we show that any single-qubit operation between two states of the DFS can be induced by means of a microwave field. Typical operation times of these qubit rotations can be significantly shorter than for a nuclear spin system.Comment: 15 pages, 11 figure
    • …
    corecore