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Two-mode single-atom laser as a source of entangled light
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A two-mode single-atom laser is considered, with the aim of generating entanglement in macro-
scopic light. Two transitions in the four-level gain medium atom independently interact with the
two cavity modes, while two other transitions are driven by control laser fields. Atomic relaxation
as well as cavity losses are taken into account. We show that this system is a source of macroscopic
entangled light over a wide range of control parameters and initial states of the cavity field.

PACS numbers: 03.67.Mn, 42.50.Dv, 42.50.Pq

I. INTRODUCTION

Quantum entanglement is known to be the key re-
source in many applications of quantum information and
quantum computing [1]. These phenomena range from
quantum teleportation [2, 3] and quantum cryptography
[4] to quantum implementation of Shor’s algorithm [5]
and quantum search [6]. It is therefore not surprising
that there has been a great deal of interest in the gener-
ation and measurement of entanglement in recent years.
Entangled states have been considered traditionally

between individual qubits. However, it has been shown
that continuous variable entanglement can offer an ad-
vantage in some situations in quantum information sci-
ence [7]. One reason for this is that continuous vari-
able entanglement often can be prepared uncondition-
ally, whereas the preparation of discrete entanglement
usually relies on an event selection via coincidence mea-
surements. The classic scheme for the generation of con-
tinuous variable entanglement is the parametric down-
conversion. Starting with the first demonstration by Ou
et al. [8], the generation of entanglement in such sys-
tems has been achieved in several experiments [7]. It
still remains, however, a challenge to generate entan-
glement in macroscopic light rather than on the few
photon level. Promising candidates for the generation
of macroscopic light entanglement are optical ampli-
fiers [9, 10, 11, 12, 13]. For example, it was shown re-
cently that a two-mode correlated spontaneous emission
laser (CEL) [14, 15] can lead to two-mode entanglement
even when the average photon number in the field modes
are very large [12, 13]. In this setup, the gain medium
can be thought of as a stream of suitably prepared atoms.
From a conceptual point of view, a much simpler sys-

tem relates to a single atom laser, where the gain medium
is replaced by a single trapped atom. Such a laser has
recently been experimentally demonstrated by Kimble’s
group [16], where a single atom interacts with a sin-
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gle cavity mode. Thus the interesting question arises,
whether a two-mode generalization of the single-atom
laser also enables one to generate entanglement in macro-
scopic light.

Therefore, here we consider a single atom that interacts
with two quantized modes of a doubly resonant cavity
via two lasing transitions. In our model, the atomic level
scheme is based on the single-atom laser experiment per-
formed by Kimble’s group [16], where dipole transitions
between four hyperfine levels of atomic caesium were con-
sidered. In contrast to their experiment, we do not work
in the strong coupling regime since we are interested in
the generation of large photon numbers. We show that,
under certain realizable conditions, a two-mode single-
atom laser can serve as a source of macroscopic entangled
light. Macroscopic entanglement can be achieved over a
wide range of control parameters and initial states of the
cavity field.

An important technical question in the generation
of continuous variable entanglement in quantum opti-
cal systems is the way such entanglement can be mea-
sured experimentally. This is a hotly discussed subject
in recent years. Several inequalities involving the cor-
relation of the field operators have been derived that
are based on the separability condition of the field
modes [17, 18, 19, 20, 21, 22, 23, 24]. A violation of these
inequalities provides an evidence of entanglement. These
inequalities can, in general, provide only a sufficient con-
dition for entanglement and only, in some very specific
instances, lead to sufficient and necessary conditions for
entanglement. In this paper we use the inequality based
on quadrature measurement of the field variables for the
test of entanglement.

II. MASTER EQUATION FOR THE DENSITY

OPERATOR OF THE CAVITY MODES

We consider a single four-level atom trapped in a dou-
bly resonant cavity (see Fig. 1). The atom interacts with
two (nondegenerate) cavity modes and two classical laser
fields. The intensities and frequencies of the two laser
fields can be adjusted independently. The aim of this
section is to derive an equation of motion for the reduced
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FIG. 1: A single four-level atom is trapped in a doubly res-
onant cavity and interacts with two cavity modes and two
classical laser fields. The inset shows the atomic level scheme.
The laser field with frequency ω3 and Rabi frequency Ω3

couples to the |a〉 ↔ |d〉 transition, and the cavity mode
with frequency ν1 and coupling constant g1 interacts with
the |a〉 ↔ |c〉 transition. ∆a is the detuning of the fields Ω3

and g1 with state |a〉. The laser field with frequency ω4 and
Rabi frequency Ω4 drives the |b〉 ↔ |c〉 transition, and the
second cavity mode with frequency ν2 and coupling constant
g2 interacts with the |b〉 ↔ |d〉 transition. ∆b is the detuning
of the fields Ω4 and g2 with state |b〉. Spontaneous emission
is denoted by dashed arrows, and the parameters Γi are the
decay rates of the various transitions.

density operator ̺F of the two cavity modes.
We begin with a detailed description of the system

shown in Fig. 1. The first cavity mode with frequency
ν1 couples to the atomic transition |a〉 ↔ |c〉, and the
second mode with frequency ν2 interacts with the atom
on the |b〉 ↔ |d〉 transition. In rotating-wave approxima-
tion (RWA), the interaction of the atom with the cavity
modes is described by the Hamiltonian

HC = ~g1a1|a〉〈c|+ ~g2a2|b〉〈d|+H.c. . (1)

Here aj (a†j) is the annihilation (creation) operator of
the cavity mode with frequency νj and coupling constant
gj (j ∈ {1, 2}). The detuning of the first cavity mode
with the |a〉 ↔ |c〉 transition is denoted by ∆1, and ∆2

is the detuning of the second mode with the |b〉 ↔ |d〉

transition,

∆1 = ν1 − ωac , ∆2 = ν2 − ωbd . (2)

The resonance frequencies on the |a〉 ↔ |c〉 and |b〉 ↔ |d〉
transitions have been labeled by ωac and ωbd, respec-
tively. In addition, the atom interacts with two classical
laser fields. The first laser field with frequency ω3 and
Rabi frequency Ω3 couples to the |a〉 ↔ |d〉 transition,
and the second field with frequency ω4 and Rabi fre-
quency Ω4 coherently drives the |b〉 ↔ |c〉 transition. In
rotating-wave approximation, the atom-laser interaction
reads

HL = −~Ω3|a〉〈d|e−iω3t − ~Ω4|b〉〈c|e−iω4t +H.c. . (3)

Note that the Rabi frequencies Ω3 = |Ω3| exp(iφ3) and
Ω4 = |Ω4| exp(iφ4) are complex numbers, and φ3 and
φ4 are determined by the phase of the laser fields. The
detuning of the laser fields with the corresponding atomic
transitions are

∆3 = ω3 − ωad , ∆4 = ω4 − ωbc , (4)

where ωad and ωbc are the resonance frequencies on the
|a〉 ↔ |d〉 and |b〉 ↔ |c〉 transitions, respectively.
The free time evolution of the cavity modes is governed

by

HR = ~ν1a
†
1a1 + ~ν2a

†
2a2 , (5)

and HA is the free Hamiltonian of the atomic degrees of
freedom,

HA = ~ωa|a〉〈a|+ ~ωb|b〉〈b|+ ~ωc|c〉〈c|+ ~ωd|d〉〈d| . (6)

With these definitions, we arrive at the master equation
for the combined system of the atomic degrees of freedom
and the two cavity modes,

˙̺ = − i

~
[HR +HA +HL +HC, ̺] + Lγ̺ . (7)

The last term in Eq. (7) accounts for spontaneous emis-
sion and is given by

Lγ̺ = −1

2

4
∑

i=1

Γi

(

S+
i S−

i ̺+ ̺S+
i S−

i − 2S−
i ̺S+

i

)

, (8)

where the atomic transition operators are defined as

S+
1 = |a〉〈d|, S+

2 = |a〉〈c| ,
S+
3 = |b〉〈c|, S+

4 = |b〉〈d| , S−
i = (S+

i )† . (9)

The parameters Γi are the decay rates of the various
atomic transitions (see Fig. 1).
In a next step, we derive from Eq. (7) the master equa-

tion for the density operator ̺F of the cavity modes,

̺F = TrA̺ = ̺aa + ̺bb + ̺cc + ̺dd , (10)
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and ̺νν denotes 〈ν|̺|ν〉. To this end, we apply a unitary
transformation W = WR ⊗WA to Eq. (7), where WR =
exp[iHRt/~] acts only on the cavity modes, and

WA =exp[i(HA + ~∆3|a〉〈a|+ ~∆4|b〉〈b|)t/~] (11)

acts only on the atomic degrees of freedom. As indicated
in Fig. 1, we assume that the condition of two-photon
resonance is fulfilled, i.e.

∆a = ∆1 = ∆3 , ∆b = ∆2 = ∆4 . (12)

The density operator in the new frame is denoted by
˜̺ = W̺W † and obeys the equation of motion

˙̺̃ = − i

~
[H0 +HC, ˜̺] + Lγ ˜̺ , (13)

where

H0 =− ~∆a|a〉〈a| − ~∆b|b〉〈b|
− ~ (Ω3|a〉〈d|+Ω4|b〉〈c|+H.c.) . (14)

The two-photon condition Eq. (12) ensures that the
Hamiltonian H0 + HC in Eq. (13) is time-independent.
The master equation for the transformed density opera-
tor ˜̺F of the cavity modes is obtained if we trace over
the atomic degrees of freedom in Eq. (13),

˙̺̃
F = −ig1[a

†
1, ˜̺ac]− ig2[a

†
2, ˜̺bd] + H.c. . (15)

In order to eliminate the coherences ˜̺ac and ˜̺bd from
Eq. (15), we apply the standard methods of laser theory
(see, e.g., Chapter 14 in [25]). We restrict the analysis to

the linear theory and solve Eq. (13) to first order in the
coupling constants g1 and g2. To this end, we expand the
density operator ˜̺F in Eq. (13) as ˜̺ = ̺0+̺C and retain
only terms up to first order with respect to HC. This
procedure yields two uncoupled equations for ̺0 and ̺C ,

˙̺0 =L0̺0 , (16)

˙̺C =L0̺C − i

~
[HC, ̺0] , (17)

and the superoperator L0 is defined as

L0(·) = − i

~
[H0, · ] + Lγ(·) . (18)

Here the centered dot denotes the position of the argu-
ment of L0. The zeroth-order equation (16) describes the
interaction of the atom with the classical laser fields to
all orders, and Eq. (17) is the first-order equation. The
steady state solution for ˜̺ac and ˜̺bd can be obtained if
the steady-state solution for ̺0 is plugged in Eq. (17).
We find

ig1 ˜̺ac = α11a1 ˜̺F + α12a
†
2 ˜̺F + β11 ˜̺Fa1 + β12 ˜̺Fa

†
2 ,

ig2 ˜̺bd = α22a2 ˜̺F + α21a
†
1 ˜̺F + β22 ˜̺Fa2 + β21 ˜̺Fa

†
1 ,
(19)

and the coefficients αij and βij are defined in Ap-
pendix A. Next we substitute Eq. (19) in Eq. (15) to
obtain the equation of motion for ˜̺F. Finally, we trans-
form ˜̺F back with respect toWR and obtain the equation
of motion for the density operator ̺F of the cavity modes,

˙̺F =− i ν1[a
†
1a1, ̺F]− i ν2[a

†
2a2, ̺F] (20)

−
[

α11a
†
1a1̺F + α∗

11̺Fa
†
1a1 − (α11 + α∗

11)a1̺Fa
†
1 − β∗

11a1a
†
1̺F − β11̺Fa1a

†
1 + (β11 + β∗

11)a
†
1̺Fa1

]

−
[

α22a
†
2a2̺F + α∗

22̺Fa
†
2a2 − (α22 + α∗

22)a2̺Fa
†
2 − β∗

22a2a
†
2̺F − β22̺Fa2a

†
2 + (β22 + β∗

22)a
†
2̺Fa2

]

−
[

(α12 + α21)a
†
1a

†
2̺F − (β12 + β21)̺Fa

†
1a

†
2 − (α21 − β12)a

†
1̺Fa

†
2 − (α12 − β21)a

†
2̺Fa

†
1

]

exp[−i(ν1 + ν2)t]

−
[

(α∗
12 + α∗

21)̺Fa1a2 − (β∗
12 + β∗

21)a1a2̺F − (α∗
21 − β∗

12)a2̺Fa1 − (α∗
12 − β∗

21)a1̺Fa2

]

exp[i(ν1 + ν2)t]

− κ1

(

a†1a1̺F + ̺Fa
†
1a1 − 2a1̺Fa

†
1

)

− κ2

(

a†2a2̺F + ̺Fa
†
2a2 − 2a2̺Fa

†
2

)

.

In the last line of Eq. (20), we included the damping of
the cavity field. The damping constants of the cavity
modes are denoted by κ1 and κ2, respectively.

In the master equation (20), the two classical laser
fields are taken into account to all orders in the Rabi

frequencies Ω3 and Ω4. On the contrary, the two quan-
tum fields inside the cavity are only treated to second
order in the coupling constants g1 and g2. This approxi-
mation means that we ignore saturation effects and oper-
ate in the regime of linear amplification. It is justified if
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the Rabi frequencies associated with the quantum fields
are small as compared to other system parameters which
dominate the time evolution.

III. ENTANGLEMENT OF THE CAVITY FIELD

In this Section we show that the system depicted in
Fig. 1 can serve as a source of macroscopic entangled
light. We employ the sufficient inseparability criterion
derived in [18] to provide evidence for the entanglement
of the two field modes.
By definition, the quantum state ̺F of the cavity field

is said to be entangled if and only if it is nonseparable,
and ̺F is separable if and only if it can be written as

̺F =
∑

j

pj̺
(1)
j ⊗ ̺

(2)
j . (21)

Here ̺
(1)
j and ̺

(2)
j are normalized states of the modes 1

and 2, respectively, and the parameters pj ≥ 0 comply
with

∑

j pj = 1. The criterion derived in [18] states that
the system is in an entangled quantum state if the to-
tal variance of two Einstein-Podolsky-Rosen (EPR) type
operators û and v̂ of the two modes satisfy the inequality

〈

(∆û)
2
+ (∆v̂)

2 〉
< 2 , (22)

where

û = x̂1 + x̂2 , v̂ = p̂1 − p̂2 . (23)

Here x̂k and p̂k are local operators which correspond to
mode k with frequency νk. They must obey the commu-
tation relation

[x̂k, p̂l] = iδkl , (24)

but are otherwise arbitrary. For the physical system con-
sidered here, it turns out that the following quadrature
operators

x̂k = (bk + b†k)/
√
2 and p̂k = (bk − b†k)/(

√
2i) (25)

are the best choice, where

bk(t) = ak exp[iνkt] and b†k(t) = a†k exp[−iνkt] . (26)

With the help of Eqs. (23) and (25), we express the total
variance of the operators û and v̂ in terms of the operators

bk and b†k,

〈

(∆û)
2
+ (∆v̂)

2 〉
= 2

[

1 + 〈b†1b1〉+ 〈b†2b2〉+ 〈b1b2〉

+〈b†1b†2〉 − 〈b1〉〈b†1〉 − 〈b2〉〈b†2〉 − 〈b1〉〈b2〉 − 〈b†1〉〈b†2〉
]

.

(27)

In Appendix B, we outline the calculation of the mean
values that enter Eq. (27).
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FIG. 2: (a) Time evolution of 〈(∆û)2 + (∆v̂)2〉. The mean

value of the total number of photons 〈N̂〉 is shown in (b) on a
logarithmic scale. At t = 0, the cavity field is assumed to be
in the vacuum state. The dashed curves were obtained with
the density operator of the parametric oscillator in Eq. (30),
and the solid curves correspond to the full density operator
in Eq. (20). The parameters are g1 = g2 = g, |Ω3| = 25g,
|Ω4| = 2g, Γ1 = Γ2 = Γ3 = Γ4 = 5g, ∆a = 0, ∆b = 40g,
κ1 = κ2 = 10−3g and φ3 + φ4 = π/2.

Next we classify several parameter regimes for which
the inequality (22) is fulfilled. In a first step, we consider
the case where the Rabi frequency |Ω3| and the detuning
∆b are much larger than the parameters |∆a|, |Ω4|, Γi

(i ∈ {1, 2, 3, 4}), i.e.

|Ω3|, |∆b| ≫ |∆a|, |Ω4|, Γi . (28)

If these conditions are fulfilled, the parameters αij and
βij in Eqs. (A1)-(A8) of Appendix A reduce to

α11 ≈ 0, α22 ≈ 0, β11 ≈ 0, β22 ≈ 0 ,

α21 ≈ 0, β12 ≈ 0, α12 ≈ β21 ≈ −iα exp[i(φ3 + φ4)t] ,

α = g1g2
|Ω4|

|Ω3|∆b

. (29)
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In these equations, φ3 and φ4 are the phases of the classi-
cal laser fields with Rabi frequencies Ω3 = |Ω3| exp(iφ3)
and |Ω4| exp(iφ4), respectively (see Sec. II). If the ap-
proximate parameters in Eq. (29) are plugged in Eq. (20),
we obtain the equation of motion for the density operator
̺F of the cavity modes in the limit (28),

˙̺F =− i ν1[a
†
1a1, ̺F]− i ν2[a

†
2a2, ̺F] + i[HP, ̺F]

− κ
(

a†1a1̺F + ̺Fa
†
1a1 − 2a1̺Fa

†
1

+a†2a2̺F + ̺Fa
†
2a2 − 2a2̺Fa

†
2

)

, (30)

where

HP =αa†1a
†
2 exp[i(φ3 + φ4)t] exp[−i(ν1 + ν2)t]

+ αa1a2 exp[−i(φ3 + φ4)t] exp[i(ν1 + ν2)t] . (31)

Here we assumed for the sake of simplicity that the de-
cay rates of the cavity modes are equal, κ1 = κ2 = κ.
We identify Eq. (30) as the master equation for a nonde-
generate parametric oscillator in the parametric approx-
imation [25]. Note that this parametric limit was also
obtained in the case of a two-mode correlated sponta-
neous emission laser discussed in [12]. Next we evaluate
the total variance of the operators û and v̂ in Eq. (27)

and the mean number of photons 〈N̂〉 = 〈a†1a1 + a†2a2〉 =
〈b†1b1+b†2b2〉 with the approximate density operator ̺F in
Eq. (30). If the sum of the laser phases obeys φ3 + φ4 =
π/2, we obtain [12]

〈

(∆û)
2
+ (∆v̂)

2 〉
(t) =

[

〈

(∆û)
2
+ (∆v̂)

2 〉
(0)

− 2κ

α+ κ

]

e−2(α+κ)t +
2κ

α+ κ
, (32)

〈

N̂
〉

(t) =

[

〈

N̂
〉

(0)− α2

κ2 − α2

]

cosh(2αt)e−2κt

−
[

ακ

κ2 − α2
+
〈

a1a2 + a†1a
†
2

〉

(0)

]

sinh(2αt)e−2κt

+
α2

κ2 − α2
. (33)

It follows from Eq. (32) that the entanglement criterion
in Eq. (22) is satisfied for any initial state of the cavity
field if (α+ κ)t ≫ 1 and α > 0 [12] . The time evolution
of the total variance of the operators û and v̂ is shown in
Fig. 2(a). The dashed curve shows 〈(∆û)

2
+ (∆v̂)

2〉 ac-
cording to Eq. (32), and the solid line corresponds to the
general case where the mean values in Eq. (27) are eval-
uated with the full density operator ̺F in Eq. (20). The
cavity modes are assumed to be in the vacuum state ini-
tially, and the parameters comply with condition (28).
It follows from Fig. 2 that the approximate result in
Eq. (32) is only in good agreement with the exact so-
lution if gt < 300. While the light field remains in an
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FIG. 3: (Color online) (a) Time evolution of 〈(∆û)2+(∆v̂)2〉.

The mean value of the total number of photons 〈N̂〉 is shown
in (b) on a logarithmic scale. At t = 0, the cavity field is
assumed to be in the vacuum state, and we set Γ1 = Γ2 =
Γ3 = Γ4 = 5g, g1 = g2 = g, κ1 = κ2 = 10−3g and φ3 +
φ4 = π/2. The parameters for the curves labeled with I are
|Ω3| = 25g, |Ω4| = 9.8g, ∆a = 0, ∆b = 43g, and for II we
have |Ω3| = 15g, |Ω4| = 6g, ∆a = 0, ∆b = 32.5g.

entangled state in the parametric case, the exact solu-
tion demonstrates that the entanglement of the cavity
field exists only for a finite period of time.

Next we discuss the time evolution of the mean num-
ber of photons 〈N̂〉. According to Eq. (33), 〈N̂〉 grows
exponentially with time for any initial state of the cavity
field, provided that (α − κ)t ≫ 1 and α > κ [12]. The

time evolution of 〈N̂〉 is shown in Fig. 2(b) on a logarith-

mic scale. In contrast to 〈(∆û)
2
+ (∆v̂)

2〉, the result for

〈N̂〉 in the parametric approximation (dashed line) is in
good agreement with the exact solution (solid line) even
for gt ≫ 300. Moreover, Fig. 2(b) shows that the mean
number of photons grows exponentially if the scaled time
gt is sufficiently large.

According to Fig. 2, the entangled state of the cavity
field contains up to 〈N̂〉 ≈ 110 photons on average. It
follows that the single-atom laser depicted in Fig. 1 can
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give rise to an entangled quantum state of the two cavity
modes if the parameters are in agreement with condi-
tion (28). If this condition holds, level |b〉 is almost not
excited due to the large detuning ∆b, and states |c〉 and
|d〉 are coupled via a two-photon process. In contrast, the
transitions |d〉 ↔ |a〉 and |c〉 ↔ |a〉 are driven resonantly.
In this situation, the structure of the Hamiltonian HP in
Eq. (31) implies that the system can only emit photons
into the cavity fields in pairs, where one photon is emit-
ted in mode 1 and the other photon in mode 2. If the
cavity field is initially in the vacuum state |0, 0〉, it will
evolve under the influence of HP into the entangled state

a |0, 0〉+ b |1, 1〉+ c |2, 2〉+ . . . , (34)

where a, b and c are complex coefficients. If the compli-
cated master equation (20) can be reduced under certain
conditions to the parametric equation (30), it is thus clear
that a macroscopic entangled state is generated.
Due to the symmetry in the atomic level scheme, it is

possible to reverse the role of the transitions |d〉 ↔ |a〉 ↔
|c〉 and |c〉 ↔ |b〉 ↔ |d〉. In this case, the detuning ∆a

is large and the transitions |d〉 ↔ |b〉 and |c〉 ↔ |b〉 are
driven resonantly. Condition (28) then has to be replaced
by

|Ω4|, |∆a| ≫ |∆b|, |Ω3|, Γi , (35)

and the only nonvanishing coefficients in Eq. (20) are now
determined by α21 ≈ β12 ≈ −iα′ exp[i(φ3 + φ4)t], where
α′ = g1g2|Ω3|/(|Ω4|∆a). It follows that the results in
Eqs. (30), (32) and (33) are also valid if condition (35)
holds, provided that α is replaced by α′.
We now demonstrate that it can be advantageous to

consider parameters which do not comply with condi-
tions (28) or (35). Since the approximate results in
Eqs. (32) and (33) do not apply in this case, we eval-

uate the mean values 〈(∆û)2+(∆v̂)2〉 and 〈N̂〉 only with
the exact density operator ̺F in Eq. (20). The time evo-

lution of 〈(∆û)
2
+ (∆v̂)

2〉 is shown in Fig. 3(a) for two
sets of parameters. As compared to the parameters cho-
sen for Fig. (2), the magnitude of the Rabi frequency Ω4

has been increased such that |Ω3| is still larger, but not
much larger than |Ω4|. It follows from Fig. 3(a) that the
entanglement criterion in Eq. (22) is fulfilled for shorter
times as compared to the solid line in Fig. 2(a). On the
other hand, Fig. 3(b) shows that the mean number of
photons can be much larger as compared to Fig. 2(b).
For curve I of Fig. 3(a), the maximum mean number of
photons for which the entanglement criterion (22) is still

fulfilled is 〈N̂〉 ≈ 10.2 × 104. The same number for the

parameters of curve II reads 〈N̂〉 ≈ 6100. As compared
to Fig. 2, the maximum mean number of photons can be
enhanced by several orders of magnitude.
Finally, we consider the case where the quantum

state of the cavity field is initially the coherent state
|100,−100〉. The time evolution of 〈(∆û)2 + (∆v̂)2〉 and
〈N̂〉 is shown in Fig. 4 for two sets of parameters. All
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FIG. 4: (Color online) (a) Time evolution of 〈(∆û)2+(∆v̂)2〉.

The mean value of the total number of photons 〈N̂〉 is shown
in (b) on a logarithmic scale. At t = 0, the cavity field is
assumed to be in the coherent state |100,−100〉, and we set
Γ1 = Γ2 = Γ3 = Γ4 = 2g, g1 = g2 = g, κ1 = κ2 = 10−2g and
φ3 + φ4 = π/2. The parameters for the curves labeled with I
are |Ω3| = 10g, |Ω4| = 5g, ∆a = 0, ∆b = 15g, and for II we
have |Ω3| = 10g, |Ω4| = 2g, ∆a = 0, ∆b = 15g.

mean values were evaluated with the exact density oper-
ator in Eq. (20). For curve I, the magnitude of the Rabi
frequency Ω4 is larger as compared to curve II. All other
parameters are the same for curve I and II. It can be seen
from Fig. 4(a) that the entanglement criterion is fulfilled
for shorter times if |Ω4| is increased. In contrast, the
mean number of photons can be greatly enhanced if the
value of |Ω4| is increased, as can be seen from Fig. 4(b).
Similar conclusions can be drawn from Fig. 3, where the
initial state of the cavity field is the vacuum. The com-
parison of Figs. 3 and 4 shows that the mean number
of photons can be much larger than in Fig. 3 if the cav-
ity field is initially prepared in a coherent state. Due to
the large mean number of photons in the cavity modes,
the system may leave the regime of linear amplification
such that saturation effects modify the curve progression
in Fig. 4. These effects are described by terms that go
beyond the second-order expansion of the atom-cavity
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coupling and are neglected here. According to the lin-
ear theory, the maximum mean number of photons for
which the entanglement criterion (22) is still fulfilled is

〈N̂〉 ≈ 6.5× 105 in the case of curve II of Fig. 4, and in
the case of curve I the entangled cavity field contains up
to 〈N̂ 〉 ≈ 5.4× 107 photons.

IV. CONCLUSION

We have shown that a two-mode single-atom laser can
serve as a source of macroscopic entangled light. We iden-
tified two parameter regimes for which the quantum state
of the cavity field is entangled for a long period of time.

For these parameters, the master equation for the density
operator of the two cavity modes can be approximately
reduced to the master equation for a nondegenerate para-
metric oscillator in the parametric approximation.

The mean number of photons in the cavity field can be
strongly increased if parameters beyond the parametric
limit are chosen. This enhancement of the mean pho-
ton numbers is accompanied by a shortening of the time
slice for which the entanglement criterion is fulfilled. As
the initial state of the cavity field, we chose either the
vacuum or a coherent state. We demonstrated that the
mean number of photons of the entangled cavity field can
increase by several orders of magnitude if a coherent state
instead of the vacuum is chosen as an initial state.

APPENDIX A: COEFFICIENTS

Here we give the explicit definitions of the coefficients αij and βij which enter the master equation (20) for the
density operator ̺F of the two cavity modes

α11 =2g21Γ2 |Ω3|2 |Ω4|2
[

4 (P ∗
2 + 4i∆b) |Ω4|2 + P ∗

1

(

4 |Ω3|2 + P1 (P1 + P ∗
2 )
)]

/(P3P4) , (A1)

β11 =− 2g21Γ4 |Ω3|2 |Ω4|2
[

4P1 |Ω4|2 + P ∗
2

(

4 |Ω3|2 + P1 (P1 + P ∗
2 )
)]

/(P3P4) , (A2)

α12 =− 2g1g2Γ2Ω3Ω4 |Ω3|2
[

4P1 |Ω3|2 + P 2
1 (P1 + P ∗

2 )− 4 |Ω4|2 (2P1 + P ∗
2 )
]

/(P3P4) , (A3)

β12 =− 2g1g2Γ4Ω3Ω4 |Ω4|2
[

(P1 + P ∗
2 ) |P2|2 + 4 |Ω4|2 P2 + 4 |Ω3|2 (P1 − 4i∆a)

]

/(P3P4) , (A4)

α22 =2g22Γ4 |Ω3|2 |Ω4|2
[

4 (P ∗
1 + 4i∆a) |Ω3|2 + P ∗

2

(

4 |Ω4|2 + P2 (P2 + P ∗
1 )
)]

/(P3P5) , (A5)

β22 =− 2g22Γ2 |Ω3|2 |Ω4|2
[

4P2 |Ω3|2 + P ∗
1

(

4 |Ω4|2 + P2 (P2 + P ∗
1 )
)]

/(P3P5) , (A6)

α21 =− 2g1g2Γ4Ω3Ω4 |Ω4|2
[

4P2 |Ω4|2 + P 2
2 (P2 + P ∗

1 )− 4 |Ω3|2 (2P2 + P ∗
1 )
]

/(P3P5) , (A7)

β21 =− 2g1g2Γ2Ω3Ω4 |Ω3|2
[

(P2 + P ∗
1 ) |P1|2 + 4 |Ω3|2 P1 + 4 |Ω4|2 (P2 − 4i∆b)

]

/(P3P5) . (A8)

The parameters P1, P2, P3, P4 and P5 in Eqs. (A1)-(A8) are defined as

P1 =Γ3 + Γ4 + 2i∆b , (A9)

P2 =Γ1 + Γ2 + 2i∆a , (A10)

P3 =Γ2 |P1|2 |Ω3|2 + Γ4 |P2|2 |Ω4|2 + 8 |Ω3|2 |Ω4|2 (Γ2 + Γ4) , (A11)

P4 =4
(

|Ω3|2 − |Ω4|2
)2

+ P1 (P1 + P ∗
2 ) |Ω3|2 + P ∗

2 (P1 + P ∗
2 ) |Ω4|2 , (A12)

P5 =4
(

|Ω3|2 − |Ω4|2
)2

+ P ∗
1 (P2 + P ∗

1 ) |Ω3|2 + P2 (P2 + P ∗
1 ) |Ω4|2 . (A13)

APPENDIX B: CALCULATION OF THE MEAN VALUES

In the following, we outline the calculation of the mean values that enter the total variance of the operators û and
v̂ in Eq. (27). We begin with the mean values of the quadrature operators defined in Eq. (25) with respect to the
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density operator ̺F of the two cavity modes. With the help of Eq. (20), we derive the following system of differential

equations for the mean values 〈b1〉 and 〈b†2〉,

∂t

( 〈b1〉

〈b†2〉

)

= −
(

C11 + κ1 C12

C∗
21 C∗

22 + κ2

)( 〈b1〉

〈b†2〉

)

, (B1)

and Cij = αij + βij . The solution to this set of coupled equations is

〈b1〉 =ew2t

[

cosh(w1t)〈b1〉0 +
1

2w1

(

〈b1〉0 (C∗
22 − C11 − κ1 + κ2)− 2〈b†2〉0C12

)

sinh(w1t)

]

(B2)

〈b†2〉 =ew2t

[

cosh(w1t)〈b†2〉0 +
1

2w1

(

〈b†2〉0 (C11 − C∗
22 + κ1 − κ2)− 2〈b1〉0C∗

21

)

sinh(w1t)

]

, (B3)

where

w1 =
1

2

√

4C12C∗
21 + (C11 − C∗

22 + κ1 − κ2)2 , w2 = −1

2
(C11 + C∗

22 + κ1 + κ2) , (B4)

and 〈 · 〉0 = 〈 · 〉(t = 0) denotes the initial mean value at t = 0. Note that the mean values 〈b†1〉 and 〈b2〉 can be

obtained from 〈b1〉 and 〈b†2〉 by complex conjugation, i.e. 〈b†1〉 = 〈b1〉∗ and 〈b2〉 = 〈b†2〉∗.
The remaining mean values in Eq. (27) involve products of the operators bi and b†i . With the aid of Eq. (20), we

obtain the following set of differential equations,

∂tR = MR+ I , (B5)

where R =
(

〈b†1b1〉, 〈b†2b2〉, 〈b1b2〉, 〈b†1b†2〉
)

and

M = −

















D11 0 C∗
12 C12

0 D22 C∗
21 C21

C21 C12 D12 0

C∗
21 C∗

12 0 D∗
12

















, I = −

















β11 + β∗
11

β22 + β∗
22

α12 + α21

α∗
12 + α∗

21

















. (B6)

The elements of the matrix M are defined as

Cij = αij + βij , Dii = αii + α∗
ii + βii + β∗

ii + 2κi , and D12 = C11 + C22 + κ1 + κ2 . (B7)

The differential equation Eq. (B5) can be solved numerically without difficulties. An analytical solution can be
obtained, for example, by means of the Laplace transform method which yields the following results for the components
Ri of the vector R,

Ri =

4
∑

k=1

[

Res(fi, λk) + Res(gi, λk)
]

eλkt +Res(gi, 0) . (B8)

In this equation, expressions of the type Res(h, z) denote the residue of the function h evaluated at z, and the functions
f = (f1, f2, f3, f4) and g = (g1, g2, g3, g4) are determined by

f(s) =
[

s 1̂4 −M
]−1

R0 and g(s) =
[

s 1̂4 −M
]−1

(I/s) , (B9)

respectively. Here 1̂4 denotes the 4 × 4 identity matrix, and the vector R0 is the initial value of R at t = 0,

R0 =
(

〈b†1b1〉0, 〈b†2b2〉0, 〈b1b2〉0, 〈b†1b†2〉0
)

. Finally, the parameters λk are the four (complex) eigenvalues of the matrix

M which is defined in Eq. (B6). The eigenvalues λk can be obtained as the roots of the following equation,

s4 + [D11 +D22 +D12 +D∗
12] s

3 +
[

|D12|2 − 2C21C
∗
12 − 2C12C

∗
21 +D11D22 + (D11 +D22)(D12 +D∗

12)
]

s2

+
[

(D11 +D22)|D12|2 − (C21C
∗
12 + C12C

∗
21)(D11 +D22 +D12 +D∗

12) +D11D22(D12 +D∗
12)
]

s

+ C2
21(C

∗
12)

2 − (2C12C
∗
21 +D11D12 +D22D

∗
12)C21C

∗
12 + (C12C

∗
21 −D22D12)(C12C

∗
21 −D11D

∗
12) = 0 . (B10)
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