406 research outputs found

    Three-dimensional surface convection simulations of metal-poor stars: The effect of scattering on the photospheric temperature stratification

    Get PDF
    Context: Three-dimensional (3D) radiative hydrodynamic model atmospheres of metal-poor late-type stars are characterized by cooler upper photospheric layers than their one-dimensional counterparts. This property of 3D model atmospheres can dramatically affect the determination of elemental abundances from temperature-sensitive spectral features, with profound consequences on galactic chemical evolution studies. Aims. We investigate whether the cool surface temperatures predicted by 3D model atmospheres of metal-poor stars can be ascribed to approximations in the treatment of scattering during the modelling phase. Methods. We use the Bifrost code to construct 3D model atmospheres of metal-poor stars and test three different ways to handle scattering in the radiative transfer equation. As a first approach, we solve iteratively the radiative transfer equation for the general case of a source function with a coherent scattering term, treating scattering in a correct and consistent way. As a second approach, we solve the radiative transfer equation in local thermodynamic equilibrium approximation, neglecting altogether the contribution of continuum scattering to extinction in the optically thin layers; this has been the default mode in our previous 3D modelling as well as in present Stagger-Code models. As our third and final approach, we treat continuum scattering as pure absorption everywhere, which is the standard case in the 3D modelling by the CO5BOLD collaboration. Results. For all simulations, we find that the second approach produces temperature structures with cool upper photospheric layers very similar to the case in which scattering is treated correctly. In contrast, treating scattering as pure absorption leads instead to significantly hotter and shallower temperature stratifications. The main differences in temperature structure between our published models computed with the Stagger- and Bifrost codes and those generated with the CO5BOLD code can be traced to the different treatments of scattering. Conclusions. Neglecting the contribution of continuum scattering to extinction in optically thin layers provides a good approximation to the full, iterative solution of the radiative transfer equation in metal-poor stellar surface convection simulations, and at a much lower computational cost. Our results also demonstrate that the cool temperature stratifications predicted for metal-poor late-type stars by previous models by our collaboration are not an artifact of the approximated treatment of scattering

    Many-Body Effects on Tunneling of Electrons in Magnetic-Field-Induced Quasi One-Dimensional Electron Systems in Semiconductor Nanowhiskers

    Full text link
    Effects of the electron-electron interaction on tunneling in a semiconductor nanowhisker are studied in a magnetic quantum limit. We consider the system with which bulk and edge states coexist. In bulk states, the temperature dependence of the transmission probability is qualitatively similar to that of a one-dimensional electron system. We investigate contributions of edge states on transmission probability in bulk states. Those contributions can be neglected within our approximation which takes into account only most divergent terms at low temperatures.Comment: 9 pages, 6 figure

    Magnetic field diagnostics and spatio-temporal variability of the solar transition region

    Full text link
    Magnetic field diagnostics of the transition region from the chromosphere to the corona faces us with the problem that one has to apply extreme UV spectro-polarimetry. While for coronal diagnostic techniques already exist through infrared coronagraphy above the limb and radio observations on the disk, for the transition region one has to investigate extreme UV observations. However, so far the success of such observations has been limited, but there are various projects to get spectro-polarimetric data in the extreme UV in the near future. Therefore it is timely to study the polarimetric signals we can expect for such observations through realistic forward modeling. We employ a 3D MHD forward model of the solar corona and synthesize the Stokes I and Stokes V profiles of C IV 1548 A. A signal well above 0.001 in Stokes V can be expected, even when integrating for several minutes in order to reach the required signal-to-noise ratio, despite the fact that the intensity in the model is rapidly changing (just as in observations). Often this variability of the intensity is used as an argument against transition region magnetic diagnostics which requires exposure times of minutes. However, the magnetic field is evolving much slower than the intensity, and thus when integrating in time the degree of (circular) polarization remains rather constant. Our study shows the feasibility to measure the transition region magnetic field, if a polarimetric accuracy on the order of 0.001 can be reached, which we can expect from planned instrumentation.Comment: Accepted for publication in Solar Physics (4.Mar.2013), 19 pages, 9 figure

    Turbulent Coronal Heating Mechanisms: Coupling of Dynamics and Thermodynamics

    Full text link
    Context. Photospheric motions shuffle the footpoints of the strong axial magnetic field that threads coronal loops giving rise to turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets where energy is deposited at small-scales and the heating occurs. Previous studies show that current sheets thickness is orders of magnitude smaller than current state of the art observational resolution (~700 km). Aim. In order to understand coronal heating and interpret correctly observations it is crucial to study the thermodynamics of such a system where energy is deposited at unresolved small-scales. Methods. Fully compressible three-dimensional magnetohydrodynamic simulations are carried out to understand the thermodynamics of coronal heating in the magnetically confined solar corona. Results. We show that temperature is highly structured at scales below observational resolution and nonhomogeneously distributed so that only a fraction of the coronal mass and volume gets heated at each time. Conclusions. This is a multi-thermal system where hotter and cooler plasma strands are found one next to the other also at sub-resolution scales and exhibit a temporal dynamics.Comment: A&A Letter, in pres

    Electrically Driven Light Emission from Individual CdSe Nanowires

    Full text link
    We report electroluminescence (EL) measurements carried out on three-terminal devices incorporating individual n-type CdSe nanowires. Simultaneous optical and electrical measurements reveal that EL occurs near the contact between the nanowire and a positively biased electrode or drain. The surface potential profile, obtained by using Kelvin probe microscopy, shows an abrupt potential drop near the position of the EL spot, while the band profile obtained from scanning photocurrent microscopy indicates the existence of an n-type Schottky barrier at the interface. These observations indicate that light emission occurs through a hole leakage or an inelastic scattering induced by the rapid potential drop at the nanowire-electrode interface.Comment: 12 pages, 4 figure

    Coronal heating through braiding of magnetic field lines

    Full text link
    Cool stars like our Sun are surrounded by a million degree hot outer atmosphere, the corona. Since more than 60 years the physical nature of the processes heating the corona to temperatures well in excess of those on the stellar surface remain puzzling. Recent progress in observational techniques and numerical modeling now opens a new window to approach this problem. We present the first coronal emission line spectra synthesized from three-dimensional numerical models describing the evolution of the dynamics and energetics as well as of the magnetic field in the corona. In these models the corona is heated through motions on the stellar surface that lead to a braiding of magnetic field lines inducing currents which are finally dissipated. These forward models enable us to synthesize observed properties like (average) emission line Doppler shifts or emission measures in the outer atmosphere, which until now have not been understood theoretically, even though many suggestions have been made in the past. As our model passes these observational tests, we conclude that the flux braiding mechanism is a prime candidate for being the dominant heating process of the magnetically closed corona of the Sun and solar-like stars.Comment: 4 pages, 3 figures, submitted to Ap

    Temperature dependent fluorescence in disordered Frenkel chains: interplay of equilibration and local band-edge level structure

    Get PDF
    We model the optical dynamics in linear Frenkel exciton systems governed by scattering on static disorder and lattice vibrations, and calculate the temperature dependent fluorescence spectrum and lifetime. The fluorescence Stokes shift shows a nonmonotonic behavior with temperature, which derives from the interplay of the local band-edge level structure and thermal equilibration. The model yields excellent fits to experiments performed on linear dye aggregates.Comment: 4 pages, 3 figure

    Dynamo generated field emergence through recurrent plasmoid ejections

    Full text link
    Magnetic buoyancy is believed to drive the transport of magnetic flux tubes from the convection zone to the surface of the Sun. The magnetic fields form twisted loop-like structures in the solar atmosphere. In this paper we use helical forcing to produce a large-scale dynamo-generated magnetic field, which rises even without magnetic buoyancy. A two layer system is used as computational domain where the upper part represents the solar atmosphere. Here, the evolution of the magnetic field is solved with the stress--and--relax method. Below this region a magnetic field is produced by a helical forcing function in the momentum equation, which leads to dynamo action. We find twisted magnetic fields emerging frequently to the outer layer, forming arch-like structures. In addition, recurrent plasmoid ejections can be found by looking at space--time diagrams of the magnetic field. Recent simulations in spherical coordinates show similar results.Comment: 4 pages, 8 figures, To appear in the proceedings of the IAU273 "Physics of Sun and Star Spots

    Current Profiles of Molecular Nanowires; DFT Green Function Representation

    Full text link
    The Liouville-space Green function formalism is used to compute the current density profile across a single molecule attached to electrodes. Time ordering is maintained in real, physical, time, avoiding the use of artificial time loops and backward propagations. Closed expressions for molecular currents, which only require DFT calculations for the isolated molecule, are derived to fourth order in the molecule/electrode coupling.Comment: 21 page
    corecore