658 research outputs found

    Modeling anisotropic and rate-dependent plasticity in short-fiber reinforced thermoplastics

    Get PDF
    In this study, an anisotropic viscoelastic-viscoplastic macro-mechanical model is presented for short-fiber reinforced thermoplastics (SFRT). In injection molding of SFRT, the fiber orientation is influenced by the flow velocity profile which varies throughout the mold. The flow-induced orientation in the microstructure leads to anisotropy in the mechanical response. In addition to the mechanical anisotropy, SFRTs show time dependent behavior because of the thermoplastic matrix. The developed model captures the effects of both material orientation and loading rate on the yield behavior. In this study, uniaxial tests are performed at different strain rates and material orientations with samplescutfrominjectionmoldedplaques. Theexperimentalresultsshowthattheeffects of loading rate and material orientation on the yield are decoupled. The presented model takes advantage of this observation to simplify material characterization. An implicit integration scheme is used for the numerical implementation of the model as a UMAT in ABAQUS. Multiple relaxation times are used in order to capture the nonlinear pre-yield regime. An efficient method for obtaining the model parameters for different modes is proposed. Experimental results are used for validation of the model and a good agreement is observed for the prediction of viscoelastic and viscoplastic behavior

    The shape of density dependence and the relationship between population growth, intraspecific competition and equilibrium population density

    Get PDF
    The logistic growth model is one of the most frequently used formalizations of density dependence affecting population growth, persistence and evolution. Ecological and evolutionary theory, and applications to understand population change over time often include this model. However, the assumptions and limitations of this popular model are often not well appreciated. Here, we briefly review past use of the logistic growth model and highlight limitations by deriving population growth models from underlying consumer–resource dynamics. We show that the logistic equation likely is not applicable to many biological systems. Rather, density‐regulation functions are usually non‐linear and may exhibit convex or concave curvatures depending on the biology of resources and consumers. In simple cases, the dynamics can be fully described by the Schoener model. More complex consumer dynamics show similarities to a Maynard Smith–Slatkin model. We show how population‐level parameters, such as intrinsic rates of increase and equilibrium population densities are not independent, as often assumed. Rather, they are functions of the same underlying parameters. The commonly assumed positive relationship between equilibrium population density and competitive ability is typically invalid. We propose simple relationships between intrinsic rates of increase and equilibrium population densities that capture the essence of different consumer–resource systems. Relating population level models to underlying mechanisms allows us to discuss applications to evolutionary outcomes and how these models depend on environmental conditions, like temperature via metabolic scaling. Finally, we use time‐series from microbial food chains to fit population growth models as a test case for our theoretical predictions. Our results show that density‐regulation functions need to be chosen carefully as their shapes will depend on the study system's biology. Importantly, we provide a mechanistic understanding of relationships between model parameters, which has implications for theory and for formulating biologically sound and empirically testable predictions

    Lifetime Assessment of Load-Bearing Polymer Glasses: The Influence of Physical Ageing

    Get PDF
    The timescale at which ductile failure occurs in loaded glassy polymers can be successfully predicted using the engineering approach presented in a previous publication. In this paper the influence of progressive physical ageing on the plastic deformation behaviour of unplasticised poly(vinyl chloride) (uPVC) is characterised and incorporated in the existing approach. With the modification it is possible to quantitatively predict long-term failures which show a so-called endurance limit. The predictions are compared with failure data of uPVC specimens which were subjected to constant or dynamic loads. In dynamic loading conditions a second type of failure mode was observed: fatigue crack growth. A brief study on the influence of the frequency and stress ratio of the applied stress signal shows that crack growth failure is not expected to occur within experimentally reasonable timescales for constant loading conditions

    Cranial ultrasound findings in preterm germinal matrix haemorrhage, sequelae and outcome

    Get PDF
    Germinal matrix-intraventricular haemorrhage (GMH-IVH), periventricular haemorrhagic infarction (PHI) and its complication, post-haemorrhagic ventricular dilatation (PHVD), are still common neonatal morbidities in preterm infants that are highly associated with adverse neurodevelopmental outcome. Typical cranial ultrasound (CUS) findings of GMH-IVH, PHI and PHVD, their anatomical substrates and underlying mechanisms are discussed in this paper. Furthermore, we propose a detailed descriptive classification of GMH-IVH and PHI that may improve quality of CUS reporting and prediction of outcome in infants suffering from GMH-IVH/PHI

    Pygmy dipole strength close to particle-separation energies - the case of the Mo isotopes

    Full text link
    The distribution of electromagnetic dipole strength in 92, 98, 100 Mo has been investigated by photon scattering using bremsstrahlung from the new ELBE facility. The experimental data for well separated nuclear resonances indicate a transition from a regular to a chaotic behaviour above 4 MeV of excitation energy. As the strength distributions follow a Porter-Thomas distribution much of the dipole strength is found in weak and in unresolved resonances appearing as fluctuating cross section. An analysis of this quasi-continuum - here applied to nuclear resonance fluorescence in a novel way - delivers dipole strength functions, which are combining smoothly to those obtained from (g,n)-data. Enhancements at 6.5 MeV and at ~9 MeV are linked to the pygmy dipole resonances postulated to occur in heavy nuclei.Comment: 6 pages, 5 figures, proceedings Nuclear Physics in Astrophysics II, May 16-20, Debrecen, Hungary. The original publication is available at www.eurphysj.or

    Nuclear medicine imaging of posttraumatic osteomyelitis

    Get PDF
    Early recognition of a possible infection and therefore a prompt and accurate diagnostic strategy is essential for a successful treatment of posttraumatic osteomyelitis (PTO). However, at this moment there is no single routine test available that can detect osteomyelitis beyond doubt and the performed diagnostic tests mostly depend on personal experience, available techniques and financial aspects. Nuclear medicine techniques focus on imaging pathophysiological changes which usually precede anatomical changes. Together with recent development in hybrid camera systems, leading to better spatial resolution and quantification possibilities, this provides new opportunities and possibilities for nuclear medicine modalities to play an important role in diagnosing PTO. In this overview paper the techniques and available literature results for PTO are discussed for the three most commonly used nuclear medicine techniques: the three phase bone scan (with SPECT-CT), white blood cell scintigraphy (also called leukocyte scan) with SPECT-CT and F-18-fluorodeoxyglucose (FDG)-PET/CT. Emphasis is on how these techniques are able to answer the diagnostic questions from the clinicians (trauma and orthopaedic surgeons) and which technique should be used to answer a specific question. Furthermore, three illustrative cases from clinical practice are described
    corecore