RESEARCH

REVIEW ARTICLE

www.nature.com/pr

q

Check for
updates

Cranial ultrasound findings in preterm germinal matrix
haemorrhage, sequelae and outcome

Alessandro Parodi', Paul Govaert*3#, Sandra Horsch®, Maria Carmen Bravo® and Luca A. Ramenghi' on behalf of the eurUS.brain group

Germinal matrix-intraventricular haemorrhage (GMH-IVH), periventricular haemorrhagic infarction (PHI) and its complication,
post-haemorrhagic ventricular dilatation (PHVD), are still common neonatal morbidities in preterm infants that are highly
associated with adverse neurodevelopmental outcome. Typical cranial ultrasound (CUS) findings of GMH-IVH, PHI and PHVD,
their anatomical substrates and underlying mechanisms are discussed in this paper. Furthermore, we propose a detailed
descriptive classification of GMH-IVH and PHI that may improve quality of CUS reporting and prediction of outcome in infants

suffering from GMH-IVH/PHI.
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INTRODUCTION

Epidemiology

Despite improvement in the care of preterm infants, germinal
matrix-intraventricular haemorrhage (GMH-IVH) and parenchymal
haemorrhagic infarction (PHI) remain feared complications in this
vulnerable population. The overall incidence ranges between 20
and 25% among very low birth weight (VLBW) infants.' The risk of
GMH-IVH increases with decreasing gestational age:>™ in surviv-
ing infants born at 24 weeks of gestation, the incidence of the
most severe lesions (i.e. grade Il GMH-IVH and PHI; the rationale
for grading is explained below) ranges between 10 and 25%, while
in surviving infants born beyond 28 weeks, such severe injury is
diagnosed in <5% of cases.>™* GMH-IVH is rarely observed beyond
32 weeks gestation:* in such late-onset cases, it is an epipheno-
menon of other diseases like venous thrombosis.>™”

Pathogenesis

The pathogenesis of GMH-IVH and PHI is multifactorial and
complex. Gestational age is the most important single indepen-
dent risk factor. The germinal matrix reaches its maximum volume
around 25 weeks gestation and subsequently withers. A residual
mass persists until ~36 weeks gestational age.®'° A venous origin
of GMH-IVH has been demonstrated by postmortem studies'"'?
(Fig. 1). Intrinsic fragility of germinal matrix microvasculature due
to immaturity of the vessel wall, fluctuations in cerebral blood flow
and the lack of autoregulation seem to represent important
contributing factors.'*™'® Fluctuations in venous pressure, varia-
tions in venous anatomy and genetic factors are also part of this
complex interplay.'’*° Several clinical conditions have been
associated with GMH-IVH: perinatal hypoxic-ischaemia, inflamma-
tion, cardiovascular instability, severe respiratory disease, pneu-
mothorax, inotropic drug use and many more?' All of them
induce fluctuations in CBF, which in turn increase the risk of

bleeding from fragile venules. The only single independent factor
that has been proven to decrease the risk of GMH-IVH and
improve long-term outcome is lung maturation by antenatal
glucocorticosteroid treatment.?>?* Postnatal indomethacin has
been shown to reduce the rate of severe IVH, particularly in male
infants,”®> but did not improve neurodevelopmental or sensory
long-term outcome.®® Data on the preventive effect of delayed
cord clamping are still conflicting, especially when the intrinsic risk
of low gestational age is considered.?”?

Time of onset
Postnatal GMH-IVH and PHI occur nearly exclusively during the
first week of life. In at least 50% of affected infants the onset of
GMH-IVH is on the first day of life, and by 72 h, ~90% of the lesions
are identified. Progression to higher grades occurs rapidly, within
1-3 days.?* 33 It is striking that premature infants are relatively
immune to haemorrhage after the first week of life, irrespective of
gestational age. This reduced vulnerability might be related to an
increase in blood and tissue oxygen concentration after birth,
suppressing vascular endothelial growth factor and angiopoietin-2
levels: a shutdown in angiogenesis after birth would induce
maturation of vessels making them resistant to rupture.?'3*
Foetal intracranial haemorrhage is not uncommon, with
an estimated incidence of 0.5-0.9/1000 pregnancies. Antenatal
GMH-IVH is the most common type of foetal intracranial
haemorrhage.3>” A cranial ultrasound (CUS) on admission allows
pre-existing antenatal brain injury to be identified. If antenatal GMH-
IVH occurred well before birth, residual findings (ventricular
dilatation, intraventricular clots and strands, parenchymal defects)
may be subtle (see other relevant paper in this issue). PHI with an
atypical time of onset (antenatal or after 96 postnatal hours when
unrelated to a clinical deterioration) has been associated with the
presence of thrombophilic disorders, especially factor V Leiden.'”
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Fig. 1 GMH/IVH: typical postmortem examples.

Clinical presentation in preterm infants

Most instances of GMH-IVH/PHI are clinically silent and detected
during routine CUS. Some infants manifest with subtle changes in
the level of consciousness, limb movement, tone, and eye
movement in the hours to days after the IVH. GMH-IVH and PHI
can be accompanied by various degrees of cardiorespiratory
instability and anaemia. With extensive haemorrhage, a cata-
strophic deterioration occurs with stupor, “decerebrate” posturing,
generalized tonic seizures and hypotonia.'

Outcome of grade I-lll GMH-IVH

Infants with grade Il GMH-IVH carry a significantly increased risk of
neurodevelopmental disability, especially when GMH-IVH s
complicated by post-haemorrhagic ventricular dilatation (PHVD)
that needs surgical intervention. Cerebral palsy rates in infants
with IVH Il range between 7 and 63%°*° and reflect the
heterogeneity of this collective. Infants that suffer low-grade (i.e.
grade | or Il) GMH-IVH are clearly at much lower risk of
developmental disabilities compared to infants with grade I
GMH-IVH or PHI. Therefore, it has been customary to inform
parents that the finding of an uncomplicated low-grade GMH-IVH
has no relevant impact on later neurodevelopment and academic
achievement. Recent data, though, suggest that this may not be
entirely true.**' It has been shown that low-grade GMH-IVH is
followed by microstructural impairment in periventricular and
subcortical white matter.”? Size, number and location of these
minor lesions might be of great importance in infants born at the
lowest gestational ages, although robust data are lacking. Matrix
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injury even after an uncomplicated GMH-IVH results in a relevant
loss of glial precursor cells, leading to impaired myelination and
cortical development.**** GMH-IVH further triggers inflammation
in adjacent white matter through activated microglia, passage of
red blood cells and red blood cell degradation: the resulting
perilesional tissue injury may be secondary to free radical release
and the presence of free iron.**~*% The outcome of grade | and II
GMH-IVH needs to be prospectively studied in relation to the
exact description of size and location in different parts of the
matrix protomap of telencephalic development. Similar relevant
side effects of intraventricular blood products on the cerebellar
external granular layer, after passage into the cerebellar sub-
arachnoid spaces, are not discussed here.

Complications and their outcome

Parenchymal haemorrhagic infarction. PHI complicates GMH-IVH in
~15% of cases.***® GMH-IVH of all grades can be complicated by
PHI, but the higher the grade of GMH-IVH, the more likely PHI is to
occur."*" PHI is caused by venous obstruction induced by GMH-IVH.
Venous congestion leads to ischaemia and to secondary haemor-
rhagic infarction. High intraventricular pressure due to a large
haemorrhage may additionally affect flow through the subependy-
mal veins, increasing infarct size®? Cerebral palsy and severe
cognitive impairment are common in infants who suffered from
PHI.3%%° Prognosis is highly dependent on location and extent.>*~>%
Classifying PHI into venous subtypes helps to predict outcome and
counsel parents in this difficult situation,”® and this should be
expanded in relation to specific behavioural or cognitive sequelae.
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Mortality in infants with extensive PHI is high, especially when it
occurs bilaterally. In many countries, redirection of care and end of
life decisions are considered in infants with bilateral PHI. Although
robust data on this are lacking, it is certain that redirection of care
contributes significantly to reported mortality rates.>”*®

Post-haemorrhagic ventricular dilatation. The term PHVD refers
to dilatation of the ventricles subsequent to GMH-IVH. Approxi-
mately 25% of infants with GMH-IVH develop progressive
PHVD.>® The risk of PHVD is higher following severe GMH-IVH
(i.e. grade Il GMH-IVH or PHI).%° The vast majority of instances of
progressive PHVD (80%) follow IVH lll, often in combination with
a PHI. Most often it follows obstruction of liquor pathways
around the cerebellum. While in most cases PHVD eventually
resolves (~40% spontaneously and another 15% after non-
surgical treatment), around 35% of infants with progressive
PHVD require surgical treatment, while 10% die.>® Despite
decades of extensive research, treatment of PHVD remains
challenging.®’ Several options were investigated: lumbar or
ventricular tapping, cerebrospinal fluid (CSF) drainage and
fibrinolytic treatment, surgical insertion of an external drain, a
subcutaneous reservoir and permanent ventriculo-peritoneal
shunting. The key problem is to balance between the adverse
effects of PHVD on the immature brain and the risk of
complications of interventions (e.g. infection related to CSF
tapping, secondary bleeding after fibrinolytic treatment, devel-
opment of a trapped fourth ventricle)®? PHVD is strongly
associated with neurodevelopmental impairment, particularly in
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infants with persistent PHVD that requires surgical intervention
and if PHVD is combined with PHI>° However, more recent
studies revealed a better outcome than reported earlier.3®3 This
might partly reflect the heterogeneity of management strategies
among centres. A recent multicenter study showed that early
treatment of PHVD, based on ventricular measurements, is
associated with favourable neurodevelopmental outcomes, even
when a permanent shunt is eventually needed.®*

THE ROLE OF ULTRASOUND IN DIAGNOSING GMH-IVH AND
ITS COMPLICATIONS

Screening for GMH-IVH in the NICU

Preterm infants are often unstable during the first days of life,
when GMH-IVH typically presents. CUS allows prompt diagnosis of
GMH-IVH as well as assessment of the evolution.®® In the most
critical phase, CUS should be as “quick and gentle” as possible, in
order to minimize stress for fragile neonates. As the incidence of
GMH-IVH is closely related to gestational age at birth,%® it is
reasonable to recommend the following schedule: in preterm
infants with a gestational age below 28 weeks or 1000 g, serial
CUS should be performed on days 1, 3, 7, 14, 21, 28, and then
every other week until term-equivalent age. In stable preterm
infants with a gestational age above 28 weeks, the frequency of
serial CUS can be limited to days 1, 3, 7, 14,d 28, at 6 weeks and at
term-equivalent age. Additional targeted examinations may be
warranted in case of clinically or ultrasonographically suspected
bleeding with uncertain findings.®” CUS examinations beyond the
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Fig. 2 GMH/IVH: origin and grading. GMH starts in a venule that drains into lateral subependymal collector veins; it extends into white
matter by virtue of venous compression and infarction; bottom row: T2-weighted MRI of GMH with limited IVH and limited venous infarct.
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first week of life allow detection of PHVD as well as of uncommon
occurrence of late-onset GMH-IVH.

Grading of GMH-IVH

An early grading system for GMH-IVH was proposed by Papile
et al®® in 1978, based on severity assessed by computed
tomography. Despite several ultrasound classifications subse-
quently published,’>’® the Papile classification has been widely
used for decades by clinicians and researchers.”’ It suggested that
progression from a grade | to a grade IV haemorrhage represents a
continuum, as follows: subependymal bleeding limited to
germinal matrix (grade 1), intraventricular haemorrhage extending
into normal sized ventricles and typically filling <50% of the
ventricular lumen (grade ll), intraventricular haemorrhage extend-
ing into dilated ventricles (grade lll), intraventricular haemorrhage
with parenchymal extension (grade IV). However, the formerly
called “grade IV” represents periventricular haemorrhagic venous
infarction (PHI), rather than parenchymal extension by rupture
into the parenchyma of the initial GMH-IVH—although this event
very rarely does occur®>’2 (Fig. 2). As PHI can be associated with
any grade of GMH-IVH, a classification into three grades with
separate notation for the presence of PHI, like the Volpe
classification, is strongly suggested, both in clinical practice and
in research context.' Nevertheless, subependymal GMH and very
limited IVH (intraventricular blood <10% of the ventricular lumen)
were lumped under grade | in Volpe classification, making the

Grade |: GMH

Table 1. GMHY/IVH description.
GMH IVH Venous infarction (PHI)
Size
Largest diameter <1cm Limited  Medullary Entire frontal white
matter up to the atrium
Largest diameter > 1cm extensive Above caudate

head only

Location near caudo-
thalamic groove

Thalamostriate
(terminal) vein area
complete (Monro to
atrium) partial

Above caudate head in front
of the foramen of Monro

Above caudate nucleus Inferior ventricle

behind the foramen vein area
of Monro

Other location
Along temporal horn Other

Lateral atrial vein
Direct lateral vein

Other Midline  Septal
Callosal
Striatal Superior (thalamostriate

vein territory)

Inferior (basal vein
territory)

Grade II: GMH with
limited IVH

Grade lll: GMH with
extensive IVH

eurUS.brain: GMH/IVH: ultrasound grading

Fig. 3 GMH/IVH: ultrasound grading. CUS grading of GMH/IVH; arrowheads point to GMH, arrows to the presence of clot in the ventricle

cavity; asterisk is choroid plexus.
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distinction between these two entities irrelevant.' In light of the
above-mentioned studies showing the potential detrimental
effects of intraventricular blood on the developing brain,
subependymal GMH and limited IVH were separated into two
grades in the new classification system we propose in the present
paper (Table 1). Furthermore, despite some studies showing that
germinal matrix injury results in a relevant loss of glial precursors,
the impact of subependymal GMH on neurodevelopment in
relation to its extent and location is still unknown:*** it may
therefore become a necessity to further detail descriptions of the
extent and location of GMH in the future, although this new
classification system needs to be validated in a large cohort of
patients before it can be recommended in routine clinical practice.

Ultrasonographic diagnosis of GMH-IVH

When bleeding is limited to the germinal matrix (GMH), the
typical CUS finding is a subependymal hyperechoic globular
thickening detected during the first week of life, which usually
remains visible for a few weeks (Fig. 3). As in some cases, it may
be difficult to distinguish a small subependymal GMH from
adjacent hyperechoic choroid plexus, both coronal and para-
sagittal scans should be carefully examined before a diagnosis
of GMH is made.®®”37% The most anterior portion of choroid
plexus is thin and fills the foramen of Monro at the level of the
caudo-thalamic groove; plexus thickens posteriorly, often

Hyperechoic
ependymal lining

Clot in the ventricle
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showing pulsations, is not visible in the frontal and occipital
horns of the lateral ventricle and produces a near symmetrical
picture in coronal sections.”> Asymmetric hyperechoic thicken-
ing at the caudo-thalamic groove (the most common location
for GMH) in coronal planes occurring in the first postnatal days
strongly suggests unilateral GMH. Of course, GMH may also
occur bilaterally.®®72 Conversely, an echogenicity developing at
the groove in the late neonatal period should suggest
hyperechoic germinolysis rather than late GMH.”®’” Postmor-
tem studies confirmed that the majority of GMHs develop in the
caudo-thalamic region, although at postmortem GMH has been
described also in occipital and temporal horns: these regions
should be carefully examined during CUS.”>”® Neuroimaging
studies have demonstrated that diagnostic accuracy of CUS for
minor forms of GMH-IVH is suboptimal when compared to the
MR-SWI sequence (magnetic resonance-susceptibility weighted
imaging), which is considered the most sensitive technique for
detection of subtle haemorrhage.”®

The ependymal layer surrounding the germinal matrix may
rupture, allowing extension into the ventricular lumen (IVH),
typically at the stria terminalis. IVH can be “limited” or
“extensive”: in practice “extensive” (grade Il according to
Papile and Volpe classification) is reserved for haemorrhage
that leads to acute ventricle distension by clot and not by CSF,
but this remains arbitrary, as measurement of clot volume is not

Clot around the cerebellar hemisphere

= = Clotinthe
cCisterna magna

eurUS.brain: GMH/IVH: indirect signs of IVH and unusual extension into cavum vergae

Fig. 4 GMH/IVH: indirect signs of IVH and unusual extension into cavum vergae. Arrowhead points to GMH; asterisk represents clot in

midline cavity.

Pediatric Research (2020) 87:13-24

SPRINGER NATURE

17



Cranial ultrasound findings in preterm germinal matrix haemorrhage,...
A Parodi et al.

18

possible with ultrasound. The presence of IVH is usually
suggested by intraventricular hyperechoic clot located ante-
riorly to the foramina of Monro, above the caudo-thalamic
groove or in the occipital horn. In the latter case, insonation
through the posterior or even mastoid fontanelle allows better
visualization of the clot.’%’> However, identification of a
minimal amount of intraventricular blood (i.e. the distinction
between “pure” subependymal GMH and a limited IVH) remains
challenging. In this context, indirect signs can corroborate a
diagnosis of IVH:*® hyperechoic ependymal changes appear
from 2 to 4 weeks after IVH, while clots from supratentorial
origin can be detected in the fourth ventricle and around the
cerebellar surface by insonating through the mastoid fonta-
nelle. Ventricular dilatation by large clot (grade Ill according to
Papile and to Volpe classification, or extensive IVH) should be
distinguished from PHVD, which takes place after days or weeks
due to distal obstruction of CSF circulation and perhaps later to
impaired resorption.®® Ultrasonographic characteristics of clot
changes over time should be always kept in mind in order to
consider whether IVH could be of antenatal origin when
subacute characteristics of the clot are observed soon after
birth, or to suspect an IVH already in its earliest, hyperacute
phase. Hyperechogenicity in the acute stage is due to fibrin
formation at the end of the clotting cascade and is the main
feature of the clot between 4 and 6 h and 3 days after the
bleeding.?! In the earliest, hyperacute phase, fresh IVH may
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remain hypo- or isoechoic, and motion of particulate CSF can
sometimes be visible within the ventricles (video particulate
CSF with motion). In the subacute phase, after an initial
retraction, clot is characterized by progressive hypoechoic
change in the central portion and by hyperechoic margins.
Intraventricular fibrin strands around the clot can be observed
(Fig. 3). In some cases, intraventricular clot fragments remain
detectable for months (chronic phase).®’#’®> The antenatal
origin of an IVH is often suggested by the detection of a
subacute clot or clot remnants on the first day of life.

Besides cerebellar haemorrhage, which is often detected in
patients with GMH-IVH, an uncommon type of bleeding that can
be associated with GMH-IVH is septal haemorrhage. The typical
finding is the presence of a clot in the cavum septi pellucidi
and/or in the cavum vergae (Fig. 4). Septal haemorrhage may
derive from septal veins or from extension of IVH following the
rupture of one septal leaflet.®? Plexus haemorrhage has been
described associated to GMH-IVH in neuropathological studies
of VLBW infants.”*®* However, discriminating plexus haemor-
rhage from GMH-IVH is difficult for the sonographer in the acute
stage.

Ultrasonographic diagnosis of complications of GMH-IVH

Periventricular haemorrhagic infarction. Periventricular haemor-
rhagic infarction (PHI), also referred to as parenchymal
haemorrhagic infarction or periventricular venous infarction
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eurUS.brain: GMH/IVH: GMH and deep vein relations

Fig.5 GMH/IVH: GMH and deep vein relations. Deep venous anatomy and some Doppler examples; in red circles the typical location of GMH
near the caudo-thalamic groove; initially the GMH is often separate from a resulting venous infarct; the two may merge, and extensive lesions

can be associated with absent terminal vein drainage.
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Extensive terminal vein area infarction with patent terminal vein

Inferior ventricle vein infarction

Medial subependymal vein infarction
with callosal hemorrhage
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Extensive anterior terminal vein area infarction (above caudate head)

Right supra-insular developmental venous anomaly for comparison with venous
infarction

eurUS.brain: GMH/IVH: examples of types of venous infarction

Fig. 6 GMH/IVH: examples of types of venous infarction. Examples of different types of venous infarction: thalamostriate (terminal vein),
anterior terminal vein (caudate), inferior ventricle vein, medial subependymal (midline) veins, compared with the image of typical posterior

frontal developmental venous anomaly (DVA).

or intraparenchymal lesion, can complicate each grade of
GMH-IVH and seems to occur a few hours up to a few days after
the initial bleeding.®* Postmortem and Doppler studies
strongly suggest that this lesion is due to infarction following
venous obstruction and congestion.’*>787 |t is also likely that
arteriolar hypoperfusion secondary to venous obstruction
contributes to parenchymal injury (ref.;%8 Fig. 5).

The characteristic ultrasonographic appearance of PHI is a
triangular, “fan-shaped” echodensity in periventricular white
matter, ipsilateral to GMH-IVH®>'>? (Fig. 6). In the earliest phase,
the lesion appears unattached to the ventricle wall; it may
subsequently grow, touch the ventricle wall and eventually
merge into a single, large hyperechoic lesion together with the
initial GMH-IVH. The parenchymal hyperechoic area tends to
decrease after few days: this is believed to reflect the resolution
of venous congestion in the area surrounding the infarction,
which may lead the sonographer to overestimate the extent of
PHI during the acute phase.”> PHI often remains separate from
the initial GMH, appearing as a small hyperechoic lesion in
ipsilateral periventricular white matter. Multiple minute PHIs
along the course of the medullary veins can also be observed.
We speculate that such minor PHIs may result from partial
obstruction but not occlusion due to compression of a
subependymal collector vein by the GMH. The risk of develop-
ing PHI following a subependymal GMH might be related to the

Pediatric Research (2020) 87:13-24

location of the GMH itself, especially in association with a
peculiar venous anatomy prone to congestion, for example, the
presence of acute venous angles.

PHI usually evolves into cavitation within periventricular
white matter. As most PHIs develop adjacent to the ventricular
wall, porencephaly resulting from the cavitation is common
after 1 or 2 months®" (Fig. 7). Regardless of the evolution
into porencephaly, a cavitation resulting from PHI is usually
single, asymmetric and persistent. Conversely, cysts of peri-
ventricular leukomalacia typically show a symmetrical, mainly
posterior distribution and tend to disappear within few weeks,
insowggch that they are often undetectable at term-equivalent
age.”

Size and location of PHI depend on which vein is obstructed.
In some cases, more veins are involved, leading to extensive
unilateral or rarely bilateral PHI.>**>® Because a diagnosis of PHI
carries prognostic implications and may raise ethical issues in
severe cases,”>>® we propose that classification of PHI should be
adopted in routine clinical practice. Dudink et al.>® classified PHI
into venous subtypes and showed how their classification
correlates with motor outcome. Advanced MRI techniques like
DTl (diffusion tensor imaging) add useful information for
prediction of outcome.”® Nevertheless, access to MRI is difficult
in low-income countries, limited by obvious logistic obstacles
in the acute or early subacute phase of PHI due to clinical
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Acute appearance

Limited anterior terminal
(caudate) vein infarction

End stage appearance

TEA T2 MRI

eurUS.brain: GMH/IVH: evolution to porencephaly

Fig. 7 GMH/IVH: evolution to porencephaly.

instability of the infant. In this context, recognizing the venous
subtype of PHI rather than labelling the lesion as an unspecified
“PHI" (or “grade 4") can help the clinician to predict neurological
outcome, allowing the start of a targeted rehabilitation
programme at an early stage, and may enrich the quality of
counselling (see Table 1, Figs. 7 and 8).

Post-haemorrhagic ventricular dilatation. PHVD is caused by an
imbalance between production and circulation and/or resorp-
tion of CSF. It usually develops a few days to a few weeks after
the initial IVH, although exceptionally rare cases developing
after term-equivalent age have been reported.®*?*> Although
PHVD is more frequently observed after grade Il GMH-IVH and
PHI, it may complicate each grade (provided that bleeding has
extended into the ventricular lumen).>® For this reason, serial
ultrasound scans are warranted following GMH-IVH at least until
term-equivalent age (Fig. 8). Obstruction to CSF circulation at
various levels by clots or by fibrin debris initially contribute to
ventricular enlargement. The patient can develop various types
of ventricular dilatation according to the location of the
obstruction(s): unilateral PHVD following unilateral obstruction
at the foramen of Monro, supratentorial (triventricular) PHVD
following aqueduct obstruction, complete internal (tetraven-
tricular) hydrocephalus following obstruction of the fourth
ventricle outlets (foramina of Luschka and Magendi), combined
internal and external hydrocephalus (also referred to as

SPRINGERNATURE

communicating hydrocephalus) following impairment of CSF
reasorption in the peritentorial arachnoid spaces. In some cases,
the fourth ventricle is isolated from CSF circulation by combined
obstruction of aqueduct and the fourth ventricle outlets.>*°>%¢
One relevant advantage of CUS is the possibility to perform
repeated scans in order to timely detect PHVD and to follow its
evolution before and after treatment. Initial dilatation is often
transient with a stable phase followed by regression of
dilatation within days or a few weeks.>>°” Progression of PHVD
can be described with simple serial measurement of the lateral
ventricles. Percentile graphs for ventricular size have been
published decades ago and were recently reviewed.”®'%°
Ventricular Index (VI) and anterior horn width (AHW), both
obtained on a coronal plane passing through the foramina of
Monro, are commonly used parameters. However, the absence
of significant widening of the frontal horns may sometimes lead
to under-estimation of PHVD severity, as neonates tend toward
colpocephaly.'®’ Thalamo-occipital distance (TOD) is measured
on the parasagittal plane and reflects the degree of dilatation of
the trigone and the occipital horn of each lateral ventricle.
Reproducibility of these ventricular measurements (VI, AHW and
TOD) was at least good in two ultrasound studies assessing both
intra- and inter-observer reliability.**'°° VI and AHW are used in
most European NICUs to define the threshold for PHVD
treatment: although no international consensus exists on
optimal timing, the majority of European Centres initiate
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Fig. 8 GMH/IVH: post-haemorrhagic ventricular dilatation. Measurements and inspection of dilated ventricles following extensive IVH

(* third ventricle with extended protrusions).

treatment once the ventricular width has crossed the 97th
percentile + 4 mm line on Levene’s graph.'® Common findings
in severe PHVD include a rounded upper border of the frontal
horns on coronal planes (also referred to as “ballooning”) and a
rounded anterior profile of the third ventricle in the midsagittal
plane, due to the markedly dilated infundibular and supraoptic
recess. Moreover, a dilated fourth ventricle can be identified in
the midsagittal plane in case of tetraventricular or even
communicating hydrocephalus. Besides these basics, the
routine use of additional acoustic windows can provide useful
information to understand the type of PHVD the patient has
developed: insonation above the ear, can show a markedly
dilated aqueduct in tetraventricular or communicating hydro-
cephalus, as well as an obstructed aqueduct in triventricular
hydrocephalus.”” By gently tilting and rotating the probe on a
pseudo-axial plane, the sonographer should aim to depict, in
the same image, third and fourth ventricle connected by the
aqueduct (Fig. 8).

Doppler findings and GMH-IVH

Although observations were made decades ago about visualiza-
tion of deep veins in relation to GMH, this is an area where more
research is needed. There are not enough Doppler findings
published about flow changes near GMH-IVH. Improvement of
the Doppler resolution does provide the opportunity to study

Pediatric Research (2020) 87:13-24

the terminal vein and its tributaries'®*'%* (Fig. 9). Besides quality
of technique (very different between vendors) an important
pitfall in interpretation of Doppler observations is the high
percentage of variation in deep vein anatomy. The septal and
internal cerebral veins are near constantly present in viable
preterm infants, but all other veins are not.'®> Atrial veins and
the direct lateral vein can be observed and their anatomy
related to the presence of ipsilateral GMH. Variations in deep
venous anatomy may either protect against infarction or on the
contrary predispose to it; the extent of pial collateralisation may
determine infarct size. Future studies may also focus on
prevention of venous infarction when a large GMH is observed
on admission.

Ultrafast Doppler, a recently developed ultrasound technique,
allowed the introduction of functional CUS in animal models as
well as in human neonates. Functional CUS detects changes in
regional cerebral blood flow triggered by specific patterns of
sensory stimulation, by different stages of sleep and by seizures. It
has been estimated that this promising technique will be available
for the introduction in the clinical setting within a few years.'®®

CONCLUSION
State of the art ultrasound devices with high-frequency
transducers allow today very detailed diagnosis of GMH-IVH/
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vein to the basal vein

enlarged middle caudate vein

normal posterior caudate vein

bigger upward pial
veins above limited
infarct
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basal vein, caudal

to lesion symmetrical patency of medullary vessels facing

right GMH/IVH without infarction (high
sensitivity power doppler, non-directional)

eurUS.brain: GMH/IVH: doppler findings

Fig. 9 GMH/IVH: Doppler findings. a Asymmetry in terminal vein size, inversely related to size of ipsilateral direct lateral vein or lateral atrial
vein; to be compared with absent terminal vein facing extensive venous infarction. b Apparent enlargement (congestion) of a vein by GMH.
c Escape of blood from deep venous infarct along enlarged pial veins, above a Doppler-empty venous space. d Normal deep venous anatomy

in GMH without infarction.

PHI with exact anatomical description of localization and extent
of the lesion beyond the up to date commonly used grading
systems. We encourage neonatologists and ultrasonographers
to take advantage of the impressive progress in CUS imaging
quality in order to improve disease description and classification
in the routine clinical practice. In the near future, an accurate
classification of the lesions combined with the knowledge
deriving from the clinical application of modern ultrasound
techniques (e.g. functional CUS through ultrafast Doppler) may
lead to more precise prediction of outcome and open new
horizons in the understanding of pathophysiology of brain
injury and complications related to GMH-IVH.
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