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Abstract. In this study, an anisotropic viscoelastic-viscoplastic macro-mechanical model
is presented for short-fiber reinforced thermoplastics (SFRT). In injection molding of
SFRT, the fiber orientation is influenced by the flow velocity profile which varies through-
out the mold. The flow-induced orientation in the microstructure leads to anisotropy in
the mechanical response. In addition to the mechanical anisotropy, SFRTs show time
dependent behavior because of the thermoplastic matrix. The developed model captures
the effects of both material orientation and loading rate on the yield behavior. In this
study, uniaxial tests are performed at different strain rates and material orientations with
samples cut from injection molded plaques. The experimental results show that the effects
of loading rate and material orientation on the yield are decoupled. The presented model
takes advantage of this observation to simplify material characterization. An implicit
integration scheme is used for the numerical implementation of the model as a UMAT in
ABAQUS. Multiple relaxation times are used in order to capture the nonlinear pre-yield
regime. An efficient method for obtaining the model parameters for different modes is
proposed. Experimental results are used for validation of the model and a good agreement
is observed for the prediction of viscoelastic and viscoplastic behavior.

1 INTRODUCTION

Injection-molded short-fiber composites are used for a variety of load-bearing struc-
tures, especially in the automotive industry. Their fast and cost-efficient production,
light weight and better mechanical properties compared to unfilled plastics are among the
reasons for their popularity. In the injection-molding process, the flow causes the fibers
to be oriented, which leads to anisotropic mechanical properties. Also, because of the
polymer matrix, the mechanical response is time-dependent. This paper aims to propose
a reliable and accurate prediction tool for this complex mechanical response.
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In this study, a macro-mechanical continuum-based constitutive model is presented
for the components based on short-fiber reinforced thermoplastics. This model is built
upon the framework of the Eindhoven Glassy Polymer (EGP) model [1–3] which has been
successfully used for modeling time-dependent behavior of unfilled polymers. To describe
the rate-dependent plasticity this model does not use a classic explicit yield surface and
instead treats the polymer as a fluid with a very high initial viscosity which is exponentially
reduced with increasing stress. This model belongs to a class of models which follow the
pioneering work of Haward and Thackray [4]. Some other examples from this group are
the BPA model [5–7] and OGR model [8–10].

The model presented here aims to capture the anisotropic viscoelastic-viscoplastic re-
sponse of short-fiber composites. To model the rate-dependent and anisotropic yield
behavior the associated flow rule proposed by van Erp et al [11] is incorporated into the
framework of EGP. This flow rule uses Hill’s anisotropic effective stress along with an
Eyring type equation. Also, modifications to the EGP model is made to capture the
anisotropy in the viscoelastic response. The model is developed based on the observation
that the effects of orientation and loading rate on yield stress are factorizable. Experi-
mental results demonstrating this behavior are presented in the following sections.

In the next sections, first, the experimental observations and the developed constitutive
model are presented. Next, numerical implementation and material characterization are
discussed. In the end, simulations are performed to investigate the performance of the
model.

2 CONSTITUTIVE MODEL

The flow-induced fiber orientation causes anisotropy of the mechanical response of
injection-molded short-fiber composites. To investigate the dependence of the elastic
and yield behavior on the material orientation and strain rate, uniaxial tests at various
constant strain rates are performed on specimens cut from injection molded plaques. The
material used in this study is SABIC Lexan® 3412R PC (20 wt% short E-glass fiber-
reinforced polycarbonate) from SABIC Innovative Plastics, the Netherlands. Figure 1 (a)
shows measured values for yield stress at different strain rates and orientations in a double
log plot. Angle φ shows the angle with respect to the main mold flow direction at which,
the specimens are cut. In Figure 1 (b) stress-strain curves for the strain rate of 10−4 s−1

is shown. As can be seen in these figures, the mechanical response is dependent on the
specimen orientation and loading rate. In the double log plot shown in Figure 1 (a), the
curves for different angles have the same slope and only a vertical shift is observed as the
orientation is changed. This shows the effect of material orientation and strain-rate on
the yield behavior are factorizable. van Erp et al. [11] showed their proposed associated
flow rule can capture this property. This makes the characterization process simpler since
the effects of orientation and loading rate can be taken apart.

In the EGP model, total stress σ consists of two components acting in parallel. The
components are called driving stress σs which is the dominant contribution in the pre-yield
regime, and the hardening stress σr which is more important in the post-yield behavior.
The mechanical analog of the model is shown in Figure 2. The hardening stress comes
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Figure 1: (a) Measured yield stress values at different material orientations and strain
rates for polycarbonate with 20 wt% glass fiber; solid lines are guide-to-the-eye (b)

stress-strain curves for uniaxial tension tests on polycarbonate with 20 wt% glass fiber
at a constant strain rate of 10−4 s−1 for different material orientations.

from the spring with the modulus Gr and the driving stress is the sum of stress values
from all the Maxwell branches. The use of multiple Maxwell branches helps modeling of
the nonlinear and rate-dependent pre-yield regime. The total stress is written as:

σ = σr +
n∑

i=1

σs,i, (1)

where n is the number of Maxwell elements, σs,i is driving stress component from the ith
Maxwell branch and σr is the hardening stress. The hardening stress is not utilized in
the current study since samples fail at relatively low plastic strains. To model the elastic
anisotropy, linear orthotropic springs are used in each Maxwell element. To calculate
stress in each Maxwell branch, first, a second Piola-Kirchhoff type stress is calculated in
the intermediate configuration according to:

Ŝs,i =
4Ĉi : Êe,i, (2)

where Êe,i shows the Green-Lagrange strain tensor, and 4Ĉi represents the 4th order
orthotropic elastic stiffness tensor. After the stress is calculated, it is pushed back to
the current configuration and Cauchy stress is obtained. It should be noted that, the
deformation gradient in each element F i, is decomposed multiplicatively into elastic and
plastic components, where first, a rotation-free plastic deformation F p,i brings the material
to an intermediate stress-free configuration and then the elastic deformation F e,i is applied
and the material comes to its current configuration.

The plastic rate of deformation is defined in the intermediate configuration as follows:

D̂p,i = sym( ˙F p,i · F−1
p,i ). (3)
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Figure 2: Mechanical analog of the constitutive model consisting of multiple Maxwell
elements.

This rate for ith Maxwell element is found through the associated flow rule proposed by
van Erp et al. [11]:

D̂p,i = ˙̄γp,iN̂ i, (4)

N̂ i =
∂τ̄i

∂Ŝs,i

, (5)

where τ̄i is calculated from Hill’s effective stress [13] and ˙̄γp,i is the equivalent rate of
plastic deformation. An Eyring type flow equation [12] is used to find this rate:

˙̄γp,i =
τ̄i
ηi
, (6)

where ηi is the viscosity and is obtained as follows:

ηi = η0,ia(τ̄), (7)

where η0,i is the zero shear viscosity, which is modified with the stress shift factor a(τ̄),
defined as:

a(τ̄) =
τ̄ /τ0

sinh(τ̄ /τ0)
, (8)

where τ0 is called characteristic stress and γ̇0 is the rate constant. It should be noted that
the same shift factor is applied to all the branches and the equivalent stress τ̄ in the above
equation is calculated from the total driving stress σs using the Hill’s effective stress [13].

For the numerical implementation of the presented model, an implicit scheme is applied.
For brevity, the index i, for the ith mode, is eliminated in the following equations. First,
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an initial guess is made for the plastic right Cauchy-Green deformation tensor Cpn+1 .
Using this value, the plastic right stretch tensor U pn+1 is calculated at the end of the time
step at tn+1:

U pn+1 =
√

Cpn+1 . (9)

Then, the elastic deformation gradient tensor F en+1 is obtained:

F en+1 = F n+1 ·U−1
pn+1

. (10)

Using the elastic deformation gradient tensor F en+1 the driving stress tensor can be cal-
culated from Equation (2). To obtain the stress shift factor a, the equivalent stress τ̄n+1 is
obtained from its value at tn using forward Euler explicit integration. This facilitates the
integration process since the stress tensor in each mode can be calculated independent of
the other modes at each step:

τ̄n+1 = τ̄n + ˙̄τn∆t. (11)

After calculating the stress shift factor from Equation (8), the plastic rate of defor-
mation D̂pn+1 can be obtained using Equations (4) to (8). In the next step, rate of the
plastic right Cauchy-Green deformation tensor Ċpn+1 is found as follows:

Ċpn+1 = 2U pn+1 · D̂pn+1 ·U pn+1 . (12)

The plastic right Cauchy-Green deformation tensor at the time tn+1 is then found accord-
ing to:

Cpn+1 = Cpn +∆tĊpn+1 . (13)

This set of equations is solved with the Newton-Raphson scheme. In each iteration
of the Newton-Raphson scheme, an initial estimate will be chosen for Cpn+1 and the
residual is obtained by finding the difference between this initial guess and the value
calculated from Equation (13). Using the presented implicit integration scheme, the
model is implemented in the finite element package ABAQUS as a user material subroutine
UMAT.

3 CHARACTERIZATION

Obtaining the input parameters for the proposed constitutive model is discussed in this
section. As was explained in the previous section, to obtain the plastic rate of deformation
tensor D̂p, Hill’s effective stress and an Eyring flow equation is used. One of the kinetics
parameters that need to be determined is the characteristic stress τ0, which determines the
slope of yield stress vs. logarithm of strain rate [3]. Because the effects of the loading rate
and material orientation are factorizable, this value is the same for all the orientations.
Figure 3 (a), shows yield stress vs. logarithm of strain rate for orientation of φ = 90◦. By
fitting the Eyring equation (Equation (6)) to this data, the value for τ0 is obtained (Table
1). Plastic anisotropy parameters such as R11 and R12 are required for calculation of Hill’s
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Figure 3: (a) Measured value for yield strength at (a) different rates for the reference
orientation of φ = 90◦ and at (b) different orientations at a strain rate of 10−4 s−1.

Table 1: Model parameters.

characteristic stress Hill parameters

τ0 [MPa] R11 R22 R12

0.8 1.26 1 1.1

effective stress [11]. The parameter R11, shows the ratio of yield in 1 direction, which here
is taken as the main direction of mold flow (φ = 0◦) which has the most amount of fiber
alignment, to yield in the reference direction. The reference yield direction is chosen as
the direction perpendicular to the main mold flow direction (φ = 90◦), which has the least
amount of fiber alignment, hence R22 = 1. The value for R12 shows, the ratio of shear
stress in 12 direction to the reference shear stress. Because of the factorizable behavior
shown in the previous section, the values for R11, R22 and R12 are independent of the
strain rate. In Figure 3 (b), Hill function is fitted to yield strength values measured for
different orientations at strain rate of 10−4 s−1. The obtained values for different Hill
parameters are shown in Table 1.

For obtaining the moduli and viscosity for each mode (Figure 2), a procedure similar
to [14] is followed. The procedure proposed in [14] is for the isotropic case. The method is
extended to the orthotropic response, by first finding the moduli in a reference direction
by the same procedure proposed in [14] and then, assuming the same distribution of the
elastic parameters between different modes as the reference direction. Here, the direction
φ = 90◦ is chosen as the reference direction and therefore E22 is found for different modes.
The obtained values for E22 and also viscosities and relaxation times are shown in Table
2. Total values for different elastic parameters are also found from the stress-strain curves
for different orientations and shown in Table 3. Sum of E22 values for different modes is
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Table 2: Normal relaxation times, moduli and zero shear viscosities, fitted using using
measurements at φ = 90◦ and ε̇ = 10−4 s−1.

Mode λnorm.
i [s] E22,i[MPa] η0,i[MPa s]

1 2.07× 1022 1659 1.14× 1025

2 1.81× 1021 164 9.91× 1022

3 2.07× 1020 136 9.39× 1021

4 2.37× 1019 118 9.36× 1020

5 2.71× 1018 93 8.40× 1019

6 3.10× 1017 83 8.61× 1018

7 3.54× 1016 71 8.43× 1017

8 4.05× 1015 65 8.76× 1016

9 4.63× 1014 56 8.65× 1015

10 5.29× 1013 57 9.99× 1014

11 6.04× 1012 49 9.81× 1013

12 6.91× 1011 47 1.09× 1013

13 7.90× 1010 42 1.10× 1012

14 9.03× 109 43 1.30× 1011

15 1.03× 109 37 1.27× 1010

16 1.18× 108 36 1.41× 109

17 1.35× 107 36 1.62× 108

18 1.54× 106 27 1.40× 107

19 1.76× 105 39 2.31× 106

20 2.01× 104 28 1.86× 105

21 2.30× 103 25 1.89× 104

22 2.63× 102 44 3.84× 103

23 3.01× 101 59 5.91× 102

Table 3: Elastic parameters of the model.

E11 [MPa] E22 [MPa] G12 [MPa] ν12 = ν23

4181 2988 1184 0.26

approximately equal to the total E22 value shown in Table 3. A dimensionless vector m
can be found according to:

E22 =
n∑

i=1

E22,i =
n∑

i=1

miE22,

n∑
i=1

mi = 1.

(14)

Then using the assumption of the same distribution of elastic properties, one can write:

4Ci = mi
4C. (15)

It should be noted that values of Poisson ratio are assumed to be the same for all the
modes.
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Figure 4: Model predictions (solid lines) and test results (markers) for (a) yield strength
at various material orientations and strain rates and (b) stress-strain curves at different

material orientations at a strain rate of ε̇ = 10−4 s−1.

4 RESULTS AND DISCUSSION

The presented constitutive model is implemented as an ABAQUS user material sub-
routine using the implicit scheme presented in section 2. After finding the material pa-
rameters following the procedure presented in the previous section, uniaxial tension tests
are simulated in ABAQUS. As was discussed in the previous section, uniaxial test results
at φ = 90◦ for different strain rates and also results at a strain rate of 10−4 s−1 for differ-
ent orientations were used to find the model parameters. Values for yield stress for other
orientations and strain rates are obtained from ABAQUS simulations and are compared
to the experimental measurements in Figure 4 (a). In Figure 4 (b), stress-strain curves
from ABAQUS simulations are compared with the test results. As can be seen in Figure
4, there is a good match between the model predictions and experimental data for yield
strength, and with the use of a spectrum of relaxation times, the model is able to capture
the nonlinear pre-yield response with good accuracy.

Figure 5 (a) shows the results for creep simulations. Applied stress is plotted vs.
time-to-failure and model predictions (solid lines) are compared with the experimental
data (markers). Figure 5 (b) shows strain evolution in time for different stress values
from finite element simulations. The failure is considered as the point where plastic
localization happens and a very high strain rate is observed. Failure points are shown
with the markers in this figure.

The comparison of the model predictions and the experiments shows the capabilities
of the model in predicting both the yield and pre-yield behavior. The rate-dependence
and anisotropic response are modeled with good accuracy. The factorizable dependence
of the yield stress on loading rate and material orientation is also captured.
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Figure 5: (a) Comparison of model predictions (solid lines) and experimental
measurements (markers) for time-to-failure at different stress levels; (b) evolution of

engineering strain with time in creep simulations for φ = 0◦ with different stress values
(markers indicate the failure points).

5 CONCLUSIONS

In this paper, an anisotropic viscoelastic-viscoplastic macro-mechanical model was pro-
posed for short-fiber reinforced thermoplastics. Results for uniaxial tension tests at dif-
ferent strain rates and orientations were presented and it was shown that the effect of
strain rate and material orientation on the yield are factorizable. Hill’s effective stress
and an Eyring type flow equation were used to model the rate-dependent and anisotropic
yield behavior. The nonlinear, anisotropic and rate-dependent pre-yield regime was mod-
eled with application of a spectrum of relaxation times and orthotropic springs in each
Maxwell element. An implicit scheme was presented for the integration of the constitu-
tive model. It was shown that by use of the factorizability feature, the effects of strain
rate and orientation on the yield can be taken apart in the characterization process. An
effective method for finding moduli and relaxation times for different modes was also pre-
sented. The model predictions for constant strain rate and creep tests were compared
with experiments and it was shown that a good agreement exists between the results.
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