21,854 research outputs found

    Comment on: Weak Anisotropy and Disorder Dependence of the In-Plane Magnetoresistance in High-Mobility (100) Si Inversion Layers

    Full text link
    Comment on: Weak Anisotropy and Disorder Dependence of the In-Plane Magnetoresistance in High-Mobility (100) Si Inversion LayersComment: 1 page, submitted to PR

    Magnetoresistance of a two-dimensional electron gas in a parallel magnetic field

    Full text link
    The conductivity of a two-dimensional electron gas in a parallel magnetic field is calculated. We take into account the magnetic field induced spin-splitting, which changes the density of states, the Fermi momentum and the screening behavior of the electron gas. For impurity scattering we predict a positive magnetoresistance for low electron density and a negative magnetoresistance for high electron density. The theory is in qualitative agreement with recent experimental results found for Si inversion layers and Si quantum wells.Comment: 4 pages, figures included, PDF onl

    The early expansion and evolutionary dynamics of POU class genes.

    Get PDF
    The POU genes represent a diverse class of animal-specific transcription factors that play important roles in neurogenesis, pluripotency, and cell-type specification. Although previous attempts have been made to reconstruct the evolution of the POU class, these studies have been limited by a small number of representative taxa, and a lack of sequences from basally branching organisms. In this study, we performed comparative analyses on available genomes and sequences recovered through "gene fishing" to better resolve the topology of the POU gene tree. We then used ancestral state reconstruction to map the most likely changes in amino acid evolution for the conserved domains. Our work suggests that four of the six POU families evolved before the last common ancestor of living animals-doubling previous estimates-and were followed by extensive clade-specific gene loss. Amino acid changes are distributed unequally across the gene tree, consistent with a neofunctionalization model of protein evolution. We consider our results in the context of early animal evolution, and the role of POU5 genes in maintaining stem cell pluripotency

    Cyclotron resonance photoconductivity of a two-dimensional electron gas in HgTe quantum wells

    Full text link
    Far-infrared cyclotron resonance photoconductivity (CRP) is investigated in HgTe quantum wells (QWs) of various widths grown on (013) oriented GaAs substrates. It is shown that CRP is caused by the heating of two-dimensional electron gas (2DEG). From the resonance magnetic field strength effective masses and their dependence on the carrier concentration is obtained. We found that the effective mass in each sample slightly increases from the value (0.0260 \pm 0.0005)m_0 at N_s = 2.2x10^11 cm^(-2) to (0.0335 \pm 0.0005)m_0 at N_s = 9.6x10^11 cm^(-2). Compared to determination of effective masses by the temperature dependence of magnitudes of the Shubnikov-de Haas (SdH) oscillations used so far in this material our measurements demonstrate that the CRP provides a more accurate (about few percents) tool. Combining optical methods with transport measurements we found that the transport time substantially exceeds the cyclotron resonance lifetime as well as the quantum lifetime which is the shortest.Comment: 3 pages, 2 figure

    Metallic behavior in Si/SiGe 2D electron systems

    Full text link
    We calculate the temperature, density, and parallel magnetic field dependence of low temperature electronic resistivity in 2D high-mobility Si/SiGe quantum structures, assuming the conductivity limiting mechanism to be carrier scattering by screened random charged Coulombic impurity centers. We obtain comprehensive agreement with existing experimental transport data, compellingly establishing that the observed 2D metallic behavior in low-density Si/SiGe systems arises from the peculiar nature of 2D screening of long-range impurity disorder. In particular, our theory correctly predicts the experimentally observed metallic temperature dependence of 2D resistivity in the fully spin-polarized system

    Analysis and application of ERTS-1 data for regional geological mapping

    Get PDF
    Combined visual and digital techniques of analysing ERTS-1 data for geologic information have been tried on selected areas in Pennsylvania. The major physiolographic and structural provinces show up well. Supervised mapping, following the imaged expression of known geologic features on ERTS band 5 enlargements (1:250,000) of parts of eastern Pennsylvania, delimited the Diabase Sills and the Precambrian rocks of the Reading Prong with remarkable accuracy. From unsupervised mapping, transgressive linear features are apparent in unexpected density, and exhibit strong control over river valley and stream channel directions. They are unaffected by bedrock type, age, or primary structural boundaries, which suggests they are either rejuvenated basement joint directions on different scales, or they are a recently impressed structure possibly associated with a drifting North American plate. With ground mapping and underflight data, 6 scales of linear features have been recognized

    Xenopus Drf1, a Regulator of Cdc7, Displays Checkpoint-dependent Accumulation on Chromatin during an S-phase Arrest

    Get PDF
    We have cloned a Xenopus Dbf4-related factor named Drf1 and characterized this protein by using Xenopus egg extracts. Drf1 forms an active complex with the kinase Cdc7. However, most of the Cdc7 in egg extracts is not associated with Drf1, which raises the possibility that some or all of the remaining Cdc7 is bound to another Dbf4-related protein. Immunodepletion of Drf1 does not prevent DNA replication in egg extracts. Consistent with this observation, Cdc45 can still associate with chromatin in Drf1-depleted extracts, albeit at significantly reduced levels. Nonetheless, Drf1 displays highly regulated binding to replicating chromatin. Treatment of egg extracts with aphidicolin results in a substantial accumulation of Drf1 on chromatin. This accumulation is blocked by addition of caffeine and by immunodepletion of either ATR or Claspin. These observations suggest that the increased binding of Drf1 to aphidicolin-treated chromatin is an active process that is mediated by a caffeine-sensitive checkpoint pathway containing ATR and Claspin. Abrogation of this pathway also leads to a large increase in the binding of Cdc45 to chromatin. This increase is substantially reduced in the absence of Drf1, which suggests that regulation of Drf1 might be involved in the suppression of Cdc45 loading during replication arrest. We also provide evidence that elimination of this checkpoint causes resumed initiation of DNA replication in both Xenopus tissue culture cells and egg extracts. Taken together, these observations argue that Drf1 is regulated by an intra-S-phase checkpoint mechanism that down-regulates the loading of Cdc45 onto chromatin containing DNA replication blocks

    Discovering Restricted Regular Expressions with Interleaving

    Full text link
    Discovering a concise schema from given XML documents is an important problem in XML applications. In this paper, we focus on the problem of learning an unordered schema from a given set of XML examples, which is actually a problem of learning a restricted regular expression with interleaving using positive example strings. Schemas with interleaving could present meaningful knowledge that cannot be disclosed by previous inference techniques. Moreover, inference of the minimal schema with interleaving is challenging. The problem of finding a minimal schema with interleaving is shown to be NP-hard. Therefore, we develop an approximation algorithm and a heuristic solution to tackle the problem using techniques different from known inference algorithms. We do experiments on real-world data sets to demonstrate the effectiveness of our approaches. Our heuristic algorithm is shown to produce results that are very close to optimal.Comment: 12 page
    • …
    corecore