76,623 research outputs found
The role of HiPPI switches in mass storage systems: A five year prospective
New standards are evolving which provide the foundation for multi-gigabit per second data communication structures. The lowest layer protocols are so generalized that they encourage a wide range of application. Specifically, the ANSI High Performance Parallel Interface (HiPPI) is being applied to computer peripheral attachment as well as general data communication networks. The HiPPI Standards suite and technology products which incorporate the standards are introduced. The use of simple HiPPI crosspoint switches to build potentially complex extended 'fabrics' is discussed in detail. Several near term applications of the HiPPI technology are briefly described with additional attention to storage systems. Finally, some related standards are mentioned which may further expand the concepts above
Characterisation of FAD-family folds using a machine learning approach
Flavin adenine dinucleotide (FAD) and its derivatives play a crucial role in
biological processes. They are major organic cofactors and electron carriers
in both enzymatic activities and biochemical pathways. We have analysed
the relationships between sequence and structure of FAD-containing proteins
using a machine learning approach. Decision trees were generated using the
C4.5 algorithm as a means of automatically generating rules from biological
databases (TOPS, CATH and PDB). These rules were then used as
background knowledge for an ILP system to characterise the four different
classes of FAD-family folds classified in Dym and Eisenberg (2001). These
FAD-family folds are: glutathione reductase (GR), ferredoxin reductase (FR),
p-cresol methylhydroxylase (PCMH) and pyruvate oxidase (PO). Each FADfamily
was characterised by a set of rules. The “knowledge patterns”
generated from this approach are a set of rules containing conserved sequence
motifs, secondary structure sequence elements and folding information.
Every rule was then verified using statistical evaluation on the measured
significance of each rule. We show that this machine learning approach is
capable of learning and discovering interesting patterns from large biological
databases and can generate “knowledge patterns” that characterise the FADcontaining
proteins, and at the same time classify these proteins into four
different families
Prediction of protein-protein interactions using one-class classification methods and integrating diverse data
This research addresses the problem of prediction of protein-protein interactions (PPI)
when integrating diverse kinds of biological information. This task has been commonly
viewed as a binary classification problem (whether any two proteins do or do not interact)
and several different machine learning techniques have been employed to solve this
task. However the nature of the data creates two major problems which can affect results.
These are firstly imbalanced class problems due to the number of positive examples (pairs
of proteins which really interact) being much smaller than the number of negative ones.
Secondly the selection of negative examples can be based on some unreliable assumptions
which could introduce some bias in the classification results.
Here we propose the use of one-class classification (OCC) methods to deal with the task of
prediction of PPI. OCC methods utilise examples of just one class to generate a predictive
model which consequently is independent of the kind of negative examples selected; additionally
these approaches are known to cope with imbalanced class problems. We have
designed and carried out a performance evaluation study of several OCC methods for this
task, and have found that the Parzen density estimation approach outperforms the rest. We
also undertook a comparative performance evaluation between the Parzen OCC method
and several conventional learning techniques, considering different scenarios, for example
varying the number of negative examples used for training purposes. We found that the
Parzen OCC method in general performs competitively with traditional approaches and in
many situations outperforms them. Finally we evaluated the ability of the Parzen OCC
approach to predict new potential PPI targets, and validated these results by searching for
biological evidence in the literature
Rapid design of LCC current-output resonant converters with reduced electrical stresses
The paper presents and validates a straightforward design methodology for realising LCC current-output resonant converters, with the aim of reducing tank currents, and hence, electrical stresses on resonant components. The scheme is ideally suited for inclusion in a rapid iterative design environment e.g. part of a graphical user interfac
Multiple structural alignment for distantly related all b structures using TOPS pattern discovery and simulated annealing
Topsalign is a method that will structurally align diverse protein structures, for example, structural alignment of protein superfolds. All proteins within a superfold share the same fold but often have very low sequence identity and different biological and biochemical functions. There is often signi®cant structural diversity around the common scaffold of secondary structure elements of the fold. Topsalign uses topological descriptions of proteins. A pattern discovery algorithm identi®es equivalent secondary structure elements between a set of proteins and these are used to produce an initial multiple structure alignment. Simulated annealing is used to optimize the alignment. The output of Topsalign is a multiple structure-based sequence alignment and a 3D superposition of the structures. This method has been tested on three superfolds: the b jelly roll, TIM (a/b) barrel and the OB fold. Topsalign outperforms established methods on very diverse structures. Despite the pattern discovery working only on b strand secondary structure elements, Topsalign is shown to align TIM (a/b) barrel superfamilies, which contain both a helices and b strands
From Development To Evolution: The Re-Establishment Of The Alexander Kowalevsky Medal
The Saint Petersburg Society of Naturalists has reinstated the Alexander O. Kowalevsky Medal. This article announces the winners of the first medals and briefly reviews the achievements of A.O. Kowalevsky,the Russian comparative embryologist whose studies on amphioxus, tunicates and germ layer homologies pioneered evolutionary embryology and confirmed the evolutionary continuity between invertebrates and vertebrates. In re-establishing this international award, the Society is pleased to recognize both the present awardees and the memory of Kowalevsky, whose work pointed to that we now call evolutionary developmental biology
Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit
This paper demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with nonzero entries in dimension given random linear measurements of that signal. This is a massive improvement over previous results, which require measurements. The new results for OMP are comparable with recent results for another approach called Basis Pursuit (BP). In some settings, the OMP algorithm is faster and easier to implement, so it is an attractive alternative to BP for signal recovery problems
- …
