2,314 research outputs found

    Integrability of the hyperbolic reduced Maxwell-Bloch equations for strongly correlated Bose-Einstein condensates

    Get PDF
    We derive and study the hyperbolic reduced Maxwell-Bloch equations (HRMB) which acts as a simplified model for the dynamics of strongly correlated Bose-Einstein condensates. A proof of their integrability is found by the derivation of a Lax pair which is valid for both the hyperbolic and standard cases of the reduced Maxwell-Bloch equations. The origin of the latter lies in quantum optics. We derive explicit solutions of the HRMB equations that correspond to kinks propagating on the Bose-Einstein condensate (BEC). These solutions are different from Gross-Pitaevskii solitons because the nonlinearity of the HRMB equations arises from the interaction of the BEC and excited atoms

    Does a Simple Lattice Protein Exhibit Self-Organized Criticality?

    Get PDF
    There are many unanswered questions when it comes to protein folding. These questions are interesting because the tertiary structure of proteins determines its functionality in living organisms. How do proteins consistently reach their final tertiary structure from the primary sequence of amino acids? What explains the complexity of tertiary structures? Our research uses a simple hydrophobic-polar lattice-bound computational model to investigate self-organized criticality as a possible mechanism for generating complexity in protein folding and protein tertiary structures

    Laser ion acceleration using a solid target coupled with a low density layer

    Full text link
    We investigate by particle-in-cell simulations in two and three dimensions the laser-plasma interaction and the proton acceleration in multilayer targets where a low density "near-critical" layer of a few micron thickness is added on the illuminated side of a thin, high density layer. This target design can be obtained by depositing a "foam" layer on a thin metallic foil. The presence of the near-critical plasma strongly increases both the conversion efficiency and the energy of electrons and leads to enhanced acceleration of proton from a rear side layer via the Target Normal Sheath Acceleration mechanism. The electrons of the foam are strongly accelerated in the forward direction and propagate on the rear side of the target building up a high electric field with a relatively flat longitudinal profile. In these conditions the maximum proton energy is up to three times higher than in the case of the bare solid target.Comment: 9 pages, 11 figures. Submitted to Physical Review

    The Liability of the Solicitor - Trustee

    Get PDF

    Conditional regularity of solutions of the three dimensional Navier-Stokes equations and implications for intermittency

    Full text link
    Two unusual time-integral conditional regularity results are presented for the three-dimensional Navier-Stokes equations. The ideas are based on L2mL^{2m}-norms of the vorticity, denoted by Ωm(t)\Omega_{m}(t), and particularly on Dm=ΩmαmD_{m} = \Omega_{m}^{\alpha_{m}}, where αm=2m/(4m3)\alpha_{m} = 2m/(4m-3) for m1m\geq 1. The first result, more appropriate for the unforced case, can be stated simply : if there exists an 1m<1\leq m < \infty for which the integral condition is satisfied (Zm=Dm+1/DmZ_{m}=D_{m+1}/D_{m}) 0tln(1+Zmc4,m)dτ0 \int_{0}^{t}\ln (\frac{1 + Z_{m}}{c_{4,m}}) d\tau \geq 0 then no singularity can occur on [0,t][0, t]. The constant c4,m2c_{4,m} \searrow 2 for large mm. Secondly, for the forced case, by imposing a critical \textit{lower} bound on 0tDmdτ\int_{0}^{t}D_{m} d\tau, no singularity can occur in Dm(t)D_{m}(t) for \textit{large} initial data. Movement across this critical lower bound shows how solutions can behave intermittently, in analogy with a relaxation oscillator. Potential singularities that drive 0tDmdτ\int_{0}^{t}D_{m} d\tau over this critical value can be ruled out whereas other types cannot.Comment: A frequency was missing in the definition of D_{m} in (I5) v3. 11 pages, 1 figur

    Lagrangian analysis of alignment dynamics for isentropic compressible magnetohydrodynamics

    Full text link
    After a review of the isentropic compressible magnetohydrodynamics (ICMHD) equations, a quaternionic framework for studying the alignment dynamics of a general fluid flow is explained and applied to the ICMHD equations.Comment: 12 pages, 2 figures, submitted to a Focus Issue of New Journal of Physics on "Magnetohydrodynamics and the Dynamo Problem" J-F Pinton, A Pouquet, E Dormy and S Cowley, editor
    corecore