109 research outputs found

    A matter of wrapper : Defects in the nuclear envelope of lagging and bridging chromatin threatens genome integrity

    Get PDF
    Altres ajuts: Acord transformatiu CRUE-CSICAltres ajuts: La Marató de TV3 Foundation (201918-30)The nuclear envelope surrounds the eukaryotic genome and, through the nuclear pore complexes, regulates transport in and out of the nucleus. Correct nucleo-cytoplasm compartmentations are essential for nuclear functions such as DNA replication or repair. During metazoan mitosis, the nuclear envelope disintegrates to allow the segregation of the two copies of DNA between daughter cells. At the end of mitosis, it reforms on each group of chromosomes in the daughter cells. However, nuclear envelope reformation is delayed on lagging chromosomes and DNA bridges. Defects in the coordination between nuclear envelope reformation and chromosome segregation impair the nuclear functions. Mechanical stress to which micronuclei and DNA bridges are subjected to combined with their particular architecture and the altered nuclear functions result in DNA damage. While micronuclei and DNA bridges were considered for more than 100 years as mere indicators of chromosomal instability, rapid technological advances are helping to better understand the biological consequences of these aberrant nuclear morphologies. Recent studies provide interesting evidence that micronuclei and chromatin bridges act as a key platforms for a catastrophic mutational process observed in cancers called chromothripsis and a trigger for the innate immune response. Therefore, they could affect cellular functions by both genetic and non-genetic means

    Is DNA Damage Response Ready for Action Anywhere?

    Get PDF
    Organisms are continuously exposed to DNA damaging agents, consequently, cells have developed an intricate system known as the DNA damage response (DDR) in order to detect and repair DNA lesions. This response has to be rapid and accurate in order to keep genome integrity. It has been observed that the condensation state of chromatin hinders a proper DDR. However, the condensation state of chromatin is not the only barrier to DDR. In this review, we have collected data regarding the presence of DDR factors on micronuclear DNA lesions that indicate that micronuclei are almost incapable of generating an effective DDR because of defects in their nuclear envelope. Finally, considering the recent observations about the reincorporation of micronuclei to the main bulk of chromosomes, we suggest that, under certain circumstances, micronuclei carrying DNA damage might be a source of chromosome instability

    Identification of reference genes for RT-qPCR data normalisation in aging studies

    Get PDF
    Aging is associated with changes in gene expression levels that affect cellular functions and predispose to age-related diseases. The use of candidate genes whose expression remains stable during aging is required to correctly address the age-associated variations in expression levels. Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) has become a powerful approach for sensitive gene expression analysis. Reliable RT-qPCR assays rely on the normalisation of the results to stable reference genes. Taken these data together, here we evaluated the expression stability of eight frequently used reference genes in three aging models: oncogene-induced senescence (OIS), in vitro and in vivo aging. Using NormFinder and geNorm algorithms, we identified that the most stable reference gene pairs were PUM1 and TBP in OIS, GUSB and PUM1 for in vitro aging and GUSB and OAZ1 for in vivo aging. To validate these candidates, we used them to normalise the expression data of CDKN1A, APOD and TFRC genes, whose expression is known to be affected during OIS, in vitro and in vivo aging. This study demonstrates that accurate normalisation of RT-qPCR data is crucial in aging research and provides a specific subset of stable reference genes for future aging studies

    Platform trials to overcome major shortcomings of traditional clinical trials in non-alcoholic steatohepatitis? Pros and cons

    Get PDF
    Non-alcoholic steatohepatitis; Drug development; Non-invasive biomarkersEsteatohepatitis no alcohólica; Desarrollo de fármacos; Biomarcadores no invasivosEsteatohepatitis no alcohòlica; Desenvolupament de medicaments; Biomarcadors no invasiusNon-alcoholic fatty liver disease is a condition that affects 25% of the population. Non-alcoholic steatohepatitis (NASH) is a progressive form of the disease that can lead to severe complications such as cirrhosis and hepatocellular carcinoma. Despite its high prevalence, no drugs are currently approved for the treatment of NASH. The drug development pipeline in NASH is very active, yet most assets do not progress to phase III trials and those that do reach phase III often fail to achieve the endpoints necessary for approval by regulatory agencies. Amongst other reasons, the methodological and operational features of traditional clinical trials in NASH might impede optimal drug development. In this regard, platform trials might be an attractive complement or alternative to conventional clinical trials. Platform trials use a master protocol which enables evaluation of multiple investigational medicinal products concurrently or sequentially with a single, shared control arm. Through Bayesian interim analyses, these trials allow for early exit of drugs from the trial based on success or futility, while providing participants better chances of receiving active compounds through adaptive randomisation. Overall, platform trials represent an alternative for patients, pharmaceutical companies, and clinicians in the quest to accelerate the approval of pharmacologic treatments for NASH.EU-PEARL has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 853966-2. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA and Children’s Tumor Foundation, Global Alliance for TB Drug Development Non-profit Organisation, Springworks Therapeutics Inc

    Analysis of Residual DSBs in Ataxia-Telangiectasia Lymphoblast Cells Initiating Apoptosis

    Get PDF
    Altres ajuts: This work was funded by grants from Consejo de Seguridad Nuclear (CSN 2012-0001) and EURATOM (Dark.Risk GA323216). Laia Hernandez is supported by the Universitat Autònoma de Barcelona Ph.D. programme fellowshipIn order to examine the relationship between accumulation of residual DNA double-strand breaks (DSBs) and cell death, we have used a control and an ATM (Ataxia-Telangiectasia Mutated) defective cell line, as Ataxia-Telangiectasia (AT) cells tend to accumulate residual DSBs at long times after damage infliction. After irradiation, AT cells showed checkpoint impairment and a fraction of cells displayed an abnormal centrosome number and tetraploid DNA content, and this fraction increased along with apoptosis rates. At all times analyzed, AT cells displayed a significantly higher rate of radiation-induced apoptosis than normal cells. Besides apoptosis, 70-85% of the AT viable cells (TUNEL-negative) carried ≥10 γ H2AX foci/cell, while only 12-27% of normal cells did. The fraction of AT and normal cells undergoing early and late apoptosis were isolated by flow cytometry and residual DSBs were concretely scored in these populations. Half of the γ H2AX-positive AT cells undergoing early apoptosis carried ≥10 γ H2AX foci/cell and this fraction increased to 75% in late apoptosis. The results suggest that retention of DNA damage-induced γ H2AX foci is an indicative of lethal DNA damage, as cells undergoing apoptosis are those accumulating more DSBs. Scoring of residual γ H2AX foci might function as a predictive tool to assess radiation-induced apoptosis

    POSITION PAPER OF THE CATALAN SOCIETY OF GASTROENTEROLOGY ABOUT HEPATIC ELASTOGRAPHY 2022

    Full text link
    After almost 20 years using transient elastography (TE) for the non-invasive diagnosis of liver fibrosis, its use has been extended to population screening, evaluation of steatosis and complications of cirrhosis. For this reason, the "Catalan Society of Digestology" commissioned a group of experts to update the first Document carried out in 2011.The working group (8 doctors and 4 nurses) prepared a panel of questions based on the online survey "Hepatic Elastography in Catalonia 2022" following the PICO structure and the Delphi method.The answers are presented with the level of evidence, the degree of recommendation and the final consensus after being evaluated by 2 external reviewers.TE uses the simplest and most reliable elastographic method to quantify liver fibrosis, assess steatosis, and determine the risk of complications in patients with cirrhosis.Copyright © 2022 Elsevier España, S.L.U. All rights reserved

    Breast primary epithelial cells that escape p16-dependent stasis enter a telomere-driven crisis state

    Get PDF
    Breast cancer is the most common malignant disease in women, but some basic questions remain in breast cancer biology. To answer these, several cell models were developed. Recently, the use of improved cell-culture conditions has enabled the development of a new primary cell model with certain luminal characteristics. This model is relevant because, after the introduction of a specific set of genetic elements, the transformed cells yielded tumors resembling human adenocarcinomas in mice. The use of improved cell-culture conditions supporting the growth of these breast primary epithelial cells was expected to delay or eliminate stress-induced senescence and lead to the propagation of normal cells. However, no studies have been carried out to investigate these points. Propagation of breast primary epithelial cells was performed in WIT medium on Primaria plates. Immunofluorescence, western blot and qRT-PCR were used to detect molecular markers, and to determine the integrity of DNA damage-response pathways. Promoter methylation of p16 INK4a was assessed by pyrosequencing. In order to obtain a dynamic picture of chromosome instability over time in culture, we applied FISH methodologies. To better link chromosome instability with excessive telomere attrition, we introduced the telomerase reverse transcriptase human gene using a lentiviral vector. We report here that breast primary epithelial cells propagated in vitro with WIT medium on Primaria plates express some luminal characteristics, but not a complete luminal lineage phenotype. They undergo a p16-dependent stress-induced senescence (stasis), and the cells that escape stasis finally enter a crisis state with rampant chromosome instability. Chromosome instability in these cells is driven by excessive telomere attrition, as distributions of chromosomes involved in aberrations correlate with the profiles of telomere signal-free ends. Importantly, ectopic expression of the human TERT gene rescued their chromosomal instability phenotype. Essentially, our data show that contrary to what was previously suggested, improved culture conditions to propagate in vitro mammary epithelial cells with some luminal characteristics do not prevent stress-induced senescence. This barrier is overcome by spontaneous methylation of the p16 INK4a promoter, allowing the proliferation of cells with telomere dysfunction and ensuing chromosome instabilit

    Aging and radiation : bad companions

    Get PDF
    Altres ajuts: This work was supported by grants from Consejo de Seguridad Nuclear (CSN 2012-0001) and EURATOM (Dark.Risk GA 323216) to AGAging involves a deterioration of cell functions and changes that may predispose the cell to undergo an oncogenic transformation. The carcinogenic risks following radiation exposure rise with age among adults. Increasing inflammatory response, loss of oxidant/antioxidant equilibrium, ongoing telomere attrition, decline in the DNA damage response efficiency, and deleterious nuclear organization are age-related cellular changes that trigger a serious threat to genomic integrity. In this review, we discuss the mechanistic interplay between all these factors, providing an integrated view of how they contribute to the observed age-related increase in radiation sensitivity. As life expectancy increases and so it does the medical intervention, it is important to highlight the benefits of radiation protection in the elderly. Thus, a deep understanding of the mechanistic processes confining the threat of aging-related radiosensitivity is currently of foremost relevance

    Noninvasive Diagnosis of Portal Hypertension in Patients With Compensated Advanced Chronic Liver Disease

    Get PDF
    INTRODUCTION: We aimed to explore the prevalence of portal hypertension in the most common etiologies of patients with compensated advanced chronic liver disease (cACLD) and develop classification rules, based on liver stiffness measurement (LSM), that could be readily used to diagnose or exclude clinically significant portal hypertension (CSPH) in clinical practice. METHODS: This is an international cohort study including patients with paired LSM/hepatic venous pressure gradient (HVPG), LSM ≥10 kPa, and no previous decompensation. Portal hypertension was defined by an HVPG >5 mm Hg. A positive predictive value ≥90% was considered to validate LSM cutoffs for CSPH (HVPG ≥10 mm Hg), whereas a negative predictive value ≥90% ruled out CSPH. RESULTS: A total of 836 patients with hepatitis C (n = 358), nonalcoholic steatohepatitis (NASH, n = 248), alcohol use (n = 203), and hepatitis B (n = 27) were evaluated. Portal hypertension prevalence was >90% in all cACLD etiologies, except for patients with NASH (60.9%), being even lower in obese patients with NASH (53.3%); these lower prevalences of portal hypertension in patients with NASH were maintained across different strata of LSM values. LSM ≥25 kPa was the best cutoff to rule in CSPH in alcoholic liver disease, chronic hepatitis B, chronic hepatitis C, and nonobese patients with NASH, whereas in obese NASH patients, the positive predictive value was only 62.8%. A new model for patients with NASH (ANTICIPATE-NASH model) to predict CSPH considering body mass index, LSM, and platelet count was developed, and a nomogram was constructed. LSM ≤15 kPa plus platelets ≥150 × 10/L ruled out CSPH in most etiologies. DISCUSSION: Patients with cACLD of NASH etiology, especially obese patients with NASH, present lower prevalences of portal hypertension compared with other cACLD etiologies. LSM ≥25 kPa is sufficient to rule in CSPH in most etiologies, including nonobese patients with NASH, but not in obese patients with NASH

    Antigen production after latency reversal and expression of inhibitory receptors in CD8+ T cells limit the killing of HIV-1 reactivated cells

    Get PDF
    The so-called shock and kill therapies aim to combine HIV-1 reactivation by latency-reversing agents (LRA) with immune clearance to purge the HIV-1 reservoir. The clinical use of LRA has demonstrated detectable perturbations in the HIV-1 reservoir without measurable reductions to date. Consequently, fundamental questions concerning the limitations of the recognition and killing of LRA-reactivated cells by effector cells such as CD8+ T cells remain to be answered. Here, we developed a novel experimental framework where we combine the use of cytotoxic CD8+ T-cell lines and ex vivo CD8+ T cells from HIV-1-infected individuals with functional assays of LRA-inducible reactivation to delineate immune barriers to clear the reservoir. Our results demonstrate the potential for early recognition and killing of reactivated cells by CD8+ T cells. However, the potency of LRAs when crossing the barrier for antigen presentation in target cells, together with the lack of expression of inhibitory receptors in CD8+ T cells, are critical events to maximize the speed of recognition and the magnitude of the killing of LRA-inducible provirus. Taken together, our findings highlight direct limitations in LRA potency and CD8+ T cell functional status to succeed in the cure of HIV-1 infection
    corecore