339 research outputs found

    Neutrino-nucleon cross sections at energies of Megaton-scale detectors

    Full text link
    An updated set of (anti)neutrino-nucleon charged and neutral current cross sections at 3 GeVEν100 GeV3~{\rm GeV} \lesssim E_\nu \lesssim 100~{\rm GeV} is presented. These cross sections are of particular interest for the detector optimization and data processing and interpretation in the future Megaton-scale experiments like PINGU, ORCA, and Hyper-Kamiokande. Finite masses of charged leptons and target mass corrections in exclusive and deep inelastic (νˉ)νN(\bar\nu)\nu N interactions are taken into account. A new set of QCD NNLO parton density functions, the ABMP15, is used for calculation of the DIS cross sections. The sensitivity of the cross sections to phenomenological parameters and to extrapolations of the nucleon structure functions to small xx and Q2Q^2 is studied. An agreement within the uncertainties of our calculations with experimental data is demonstrated.Comment: 4 pages, 4 figures, accepted for the VLVnT-2015 Conference proceedings, will be published on EPJ Web of Conference

    A dip in the UHECR spectrum and the transition from galactic to extragalactic cosmic rays

    Get PDF
    The dip is a feature in the diffuse spectrum of ultra-high energy (UHE) protons caused by electron-positron pair production on the cosmic microwave background (CMB) radiation. For a power-law generation spectrum E2.7E^{-2.7}, the calculated position and shape of the dip is confirmed with high accuracy by the spectra observed by the Akeno-AGASA, HiRes, Yakutsk and Fly's Eye detectors. When the particle energies, measured in these detectors, are calibrated by the dip, their fluxes agree with a remarkable accuracy. The predicted shape of the dip is quite robust. The dip is only modified strongly when the fraction of nuclei heavier than protons is high at injection, which imposes some restrictions on the mechanisms of acceleration operating in UHECR sources. The existence of the dip, confirmed by observations, implies that the transition from galactic to extragalactic cosmic rays occurs at E \lsim 1\times 10^{18} eV. We show that at energies lower than a characteristic value Ecr1×1018E_{\rm cr}\approx 1\times 10^{18} eV, the spectrum of extragalactic cosmic rays flattens in all cases of interest, and it provides a natural transition to a steeper galactic cosmic ray spectrum. This transition occurs at some energy below EcrE_{\rm cr}, corresponding to the position of the so-called second knee. We discuss extensively the constraints on this model imposed by current knowledge of acceleration processes and sources of UHECR and compare it with the traditional model of transition at the ankle.Comment: Version Accepted for Publication in Astroparticle Physics (minor changes

    ANIS: High Energy Neutrino Generator for Neutrino Telescopes

    Full text link
    We present the high-energy neutrino Monte Carlo event generator ANIS (All Neutrino Interaction Simulation). The program provides a detailed and flexible neutrino event simulation for high-energy neutrino detectors, such as AMANDA, ANTARES or ICECUBE. It generates neutrinos of any flavor according to a specified flux and propagates them through the Earth. In a final step neutrino interactions are simulated within a specified volume. All relevant standard model processes are implemented. We discuss strengths and limitations of the program.Comment: 15 pages, 4 figure
    corecore