1,230 research outputs found

    HREM studies of intergrowths in Sr2[Srn-1TinO3n+1] Ruddlesden-Popper phases synthesized by mechanochemical activation

    Get PDF
    A mechanochemical activation route has been applied in order to obtain the <i>n</i>=1–4 and ∞ members of the Sr<sub>2</sub>[Sr<sub>n</sub><sub>−1</sub>Ti<sub>n</sub>O<sub>3n+1</sub>] Ruddlesden– Popper series from different (<i>n</i>+1)SrO:nTiO<sub>2</sub> mixtures. The mechanosynthesis of SrTiO<sub>3</sub> and Sr<sub>2</sub>TiO<sub>4</sub> was observed during the milling process from the initial stoichiometric mixture, but in the cases of the <i>n</i>=2–4 members, a subsequent thermal treatment was needed. The synthesis protocol of Sr<sub>3</sub>Ti<sub>2</sub>O<sub>7</sub> has been greatly improved and this compound can be isolated as a single, crystalline phase after annealing at 800°C. In the case of Sr<sub>4</sub>Ti<sub>3</sub>O<sub>10</sub> and Sr<sub>5</sub>Ti<sub>4</sub>O<sub>13</sub>, the formation temperature was also decreased, but members with <i>n</i>=3 and 4 could not be isolated. Detailed investigations using electron microscopy methods (TEM, HREM and SAED) were carried out in the samples corresponding to <i>n</i>=2–4. Although a single ordered Sr<sub>3</sub>Ti<sub>2</sub>O<sub>7</sub> structure is dominant in the sample corresponding to <i>n</i>=2, a few intergrowths of other Ruddlesden–Popper phases were observed. In the cases of <i>n</i>=3 and 4, the intergrowths of Ruddlesden–Popper phases are more frequent than in the <i>n</i>=2 composition and are randomly distributed in the sample. The more frequent occurrence of such stacking faults, with increasing <i>n</i> value, leads to a somewhat disordered layer stacking sequence

    Crystal structure of LaTiO_3.41 under pressure

    Full text link
    The crystal structure of the layered, perovskite-related LaTiO_3.41 (La_5Ti_5O_{17+\delta}) has been studied by synchrotron powder x-ray diffraction under hydrostatic pressure up to 27 GPa (T = 295 K). The ambient-pressure phase was found to remain stable up to 18 GPa. A sluggish, but reversible phase transition occurs in the range 18--24 GPa. The structural changes of the low-pressure phase are characterized by a pronounced anisotropy in the axis compressibilities, which are at a ratio of approximately 1:2:3 for the a, b, and c axes. Possible effects of pressure on the electronic properties of LaTiO_3.41 are discussed.Comment: 5 pages, 6 figure

    Leaf wax biomarkers in transit record river catchment composition

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 6420–6427, doi:10.1002/2014GL061328.Rivers carry organic molecules derived from terrestrial vegetation to sedimentary deposits in lakes and oceans, storing information about past climate and erosion, as well as representing a component of the carbon cycle. It is anticipated that sourcing of organic matter may not be uniform across catchments with substantial environmental variability in topography, vegetation zones, and climate. Here we analyze plant leaf wax biomarkers in transit in the Madre de Dios River (Peru), which drains a forested catchment across 4.5 km of elevation from the tropical montane forests of the Andes down into the rainforests of Amazonia. We find that the hydrogen isotopic composition of leaf wax molecules (specifically the C28 n-alkanoic acid) carried by this tropical mountain river largely records the elevation gradient defined by the isotopic composition of precipitation, and this supports the general interpretation of these biomarkers as proxy recorders of catchment conditions. However, we also find that leaf wax isotopic composition varies with river flow regime over storm and seasonal timescales, which could in some cases be quantitatively significant relative to changes in the isotopic composition of precipitation in the past. Our results inform on the sourcing and transport of material by a major tributary of the Amazon River and contribute to the spatial interpretation of sedimentary records of past climate using the leaf wax proxy.This work was supported by funding from the U.S. National Science Foundation award 1227192 to A.J.W. and S.J.F. V.G. was supported by the U.S. National Science Foundation award OCE-0928582.2015-03-2

    Dual isotope evidence for sedimentary integration of plant wax biomarkers across an Andes-Amazon elevation transect

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 242 (2018): 64-81, doi:10.1016/j.gca.2018.09.007.Tropical montane regions tend to have high rates of precipitation, biological production, erosion, and sediment export, which together move material off the landscape and toward sedimentary deposits downstream. Plant wax biomarkers can be used to investigate sourcing of organic matter and are often used as proxies to reconstruct past climate and environment in sedimentary deposits. To understand how plant waxes are sourced within a wet, tropical montane catchment, we measure the stable C and H isotope composition (ÎŽ13C and ÎŽD) of n-alkanes and n-alkanoic acids in soils along an elevation transect and from sediments within the Madre de Dios River network along the eastern flank of the Peruvian Andes, draining an area of 75,400 km2 and 6 km of elevation. Soils yield systematic trends in plant wax ÎŽ13C (+1.75 and +1.31‰ km−1, for the C29n-alkanes and C30n-alkanoic acids respectively in the mineral horizon) and ÎŽD values (−10 and −12‰ km−1, respectively) across a 3.5 km elevation transect, which approximates trends previously reported from canopy leaves, though we find offsets between ÎŽ13C values in plants and soils. River suspended sediments generally follow soil isotopic gradients defined by catchment elevations (ÎŽ13C: +1.03 and +0.99‰ km−1 and ÎŽD: −10 to −7‰ km−1, for the C29n-alkanes and C30n-alkanoic acids respectively) in the wet season, with a lowering in the dry season that is less well-constrained. In a few river suspended sediments, petrogenic contributions and depth-sorting influence the n-alkane ÎŽ13C signal. Our dual isotope, dual compound class and seasonal sampling approach reveals no Andean-dominance in plant wax export, and instead that the sourcing of plant waxes in this very wet, forested catchment approximates that expected for spatial integration of the upstream catchment, thus with a lowland dominance on areal basis, guiding paleoenvironmental reconstructions in tropical montane regions. The dual isotope approach provides a cross-check on the altitudinal signals and can resolve ambiguity such as might be associated with vegetation change or aridity in paleoclimate records. Further, the altitude effect encoded within plant waxes presents a novel dual-isotope biomarker approach to paleoaltimetry.This material is based upon work supported by the US National Science Foundation under Grant No. EAR-1227192 to A.J.W and S.J.F for the river work

    NaV_2O_5 as a quarter-filled ladder compound

    Full text link
    A new X-ray diffraction study of the one-dimensional spin-Peierls compound \alpha-NaV_2O_5 reveals a centrosymmetric (Pmmn) crystal structure with one type of V site, contrary to the previously postulated non-centrosymmetric P2_1mn structure with two types of V sites (V^{+4} and V^{+5}). Density functional calculations indicate that NaV_2O_5 is a quarter-filled ladder compound with the spins carried by V-O-V molecular orbitals on the rungs of the ladder. Estimates of the charge-transfer gap and the exchange coupling agree well with experiment and explain the insulating behavior of NaV_2O_5 and its magnetic properties.Comment: Final version for PRL, value of U correcte

    Redistribution of multi-phase particulate organic carbon in a marine shelf and canyon system during an exceptional river flood: Effects of Typhoon Morakot on the Gaoping River-Canyon system

    Get PDF
    This is the final published version of the article. It was originally published in Marine Geology (Sparkes RB, Lin I-T, Hovius N, Galy A, Liu JT, Xu X, Yang R, Marine Geology 2015, 363, 191–201, doi:10.1016/j.margeo.2015.02.013) http://dx.doi.org/10.1016/j.margeo.2015.02.013Volumetrically, turbidity currents are the prime suppliers of sediment to the deep sea, and conveyors of organic carbon from the terrestrial biosphere and submarine shelf into marine depositional basins. They result from complex processes of erosion, transport and deposition that can be difficult to study in detail. Here we present data from the Gaoping submarine canyon system, off SW Taiwan, which was perturbed in 2009 by the addition of flood deposits following Typhoon Morakot and sampled by gravity coring less than 2 months after the event. We use the different origins of organic carbon, distinguished by their carbon and nitrogen concentrations and ή13C and ή15N isotopic composition, to compare and contrast standard and extreme sedimentological conditions. Using well-constrained end-members, the results were de-convolved into inputs of metamorphic and sedimentary fossil organic carbon eroded within the Gaoping River basin, terrestrial non-fossil carbon and marine organic matter. In the upper Gaoping Canyon, sedimentation is dominated by the highly-localised hyperpycnal input of river washload and submarine sediment slumps, each associated with extensive flooding following Typhoon Morakot, whilst the shelf experienced deposition and reworking of hemi-pelagic marine sediments. A terrestrial signal is also found in the core-top of a fine-grained shelf sample over 20 km from the Gaoping Canyon, in a region normally dominated by marine carbon deposition, showing that Morakot was an unusually large flood event. Conversely, sediment from just above the canyon thalweg contains 0.23 wt.% depth-averaged marine organic carbon (37% of the TOC content) implying that terrestrial OC-dominated turbidites are tightly constrained within the canyon. Hyperpycnal processes can lead to the rapid and efficient transport of both terrestrial and submarine sediments to more permanent burial locations.RS was supported by an Engineering and Physical Sciences Research Council (EP/P502365/1 and EP/P504120/1) studentship. JTL was supported by grant number NSC95-2745-M-110-001 for the Fate of Terrestrial–Nonterrestrial Sediments in High Yield Particle–Export River–Sea Systems Program, which provided the cores in this study. We thank Peter Talling for his insightful and constructive comments on the manuscript and a further, anonymous reviewer for generous endorsement

    Chemical weathering outputs from the flood plain of the Ganga

    Get PDF
    Transport of sediment across riverine flood plains contributes a significant but poorly constrained fraction of the total chemical weathering fluxes from rapidly eroding mountain belts which has impor- tant implications for chemical fluxes to the oceans and the impact of orogens on long term climate. We report water and bedload chemical analyses from the Ganges flood-plain, a major transit reservoir of sediment from the Himalayan orogen. Our data comprise six major southern tributaries to the Ganga, 31 additional analyses of major rivers from the Himalayan front in Nepal, 79 samples of the Ganga collected close to the mouth below the Farakka barrage every two weeks over three years and 67 water and 8 bedload samples from tributaries confined to the Ganga flood plain,. The flood plain tributaries are characterised by a shallow d 18 O - dD array, compared to the meteoric water line, with a low dD excess from evaporative loss from the flood plain which is mirrored in the higher dD excess of the mountain rivers in Nepal. The stable-isotope data confirms that the waters in the flood plain tributaries are domi- nantly derived from flood plain rainfall and not by redistribution of waters from the mountains. The flood plain tributaries are chemically distinct from the major Himalayan rivers. They can be divided into two groups. Tributaries from a small area around the Kosi river have 87 Sr/ 86 Sr ratios > 0.75 and molar Na/Ca ratios as high as 6. Tributaries from the rest of the flood plain have 87 Sr/ 86 Sr ratios <0.74 and most have Na/Ca ratios <1. One sample of the Gomti river and seven small adjacent tributaries have elevated Na concentrations likely caused by dissolution of Na carbonate salts. The compositions of the carbonate and silicate components of the sediments were determined from sequential leaches of floodplain bedloads and these were used to partition the dissolved cation load between silicate and car- bonate sources. The 87 Sr/ 86 Sr and Sr/Ca ratios of the carbonate inputs were derived from the ace- tic-acid leach compositions and silicate Na/Ca and 87 Sr/ 86 Sr ratios derived from silicate residues from leaching. Modelling based on the 87 Sr/ 86 Sr and Sr/Ca ratios of the carbonate inputs and 87 Sr/ 86 Sr ratios of the silicates indicates that the flood plain waters have lost up to 70% of their Ca (average ~ 50%) to precipitation of secondary calcite which is abundant as a diagenetic cement in the flood plain sedi- ments. 31% of the Sr, 8% of the Ca and 45% of the Mg are calculated to be derived from silicate miner- als. Because of significant evaporative loss of water across the flood plain, and in the absence of hy- drological data for flood plain tributaries, chemical weathering fluxes from the flood plain are best calculated by mass balance of the Na, K, Ca, Mg, Sr, SO 4 and 87 Sr/ 86 Sr compositions of the inputs, comprising the flood plain tributaries, Himalayan rivers and southern rivers, with the chemical dis- charge in the Ganga at Farakka. The calculated fluxes from the flood plain for Na, K, Ca and Mg are within error of those estimated from changes in sediment chemistry across the flood plain (Lupker et al., 2012, Geochemica Cosmochimica Acta). Flood plain weathering supplies between 33 and 48% of the major cation and Sr fluxes and 58% of the alkalinity flux carried by the Ganga at Farakka which compares with 24% supplied by Himalayan rivers and 18% by the southern tributaries

    Magnetic properties of NaV2O5, a one-dimensional spin 1/2 antiferromagnet with finite chains

    Full text link
    We have performed measurements of the magnetic susceptibility of NaV2_2O5_5 between 2 and 400 K. The high temperature part is typical of spin 1/2 chains with a nearest--neighbour antiferromagnetic exchange integral JJ of 529 K. We develop a model for the susceptibility of a system with finite chains to account for the low temperature part of the data, which cannot be fitted by a standard Curie-Weiss term. These results suggest that the next nearest--neighbour exchange integral J2J_2 in CaV4_4O9_9 should be of the order of 500 K because, like JJ in NaV2_2O5_5, it corresponds to corner sharing VO5_5 square pyramids.Comment: An early version of the manuscript was mistakenly submitted. Although relatively minor, the changes concern the list of authors, the main text, the references and the figure captions. 10 pages of latex, 2 figure

    How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter

    Get PDF
    Carbon (C) in soils persists on a range of timescales depending on physical, chemical, and biological processes that interact with soil organic matter (SOM) and affect its rate of decomposition. Together these processes determine the age distribution of soil C. Most attempts to measure this age distribution have relied on operationally defined fractions using properties like density, aggregate stability, solubility, or chemical reactivity. Recently, thermal fractionation, which relies on the activation energy needed to combust SOM, has shown promise for separating young from old C by applying increasing heat to decompose SOM. Here, we investigated radiocarbon (C-14) and C-13 of C released during thermal fractionation to link activation energy to the age distribution of C in bulk soil and components previously separated by density and chemical properties. While physically and chemically isolated fractions had very distinct mean C-14 values, they contributed C across the full temperature range during thermal analysis. Thus, each thermal fraction collected during combustion of bulk soil integrates contributions from younger and older C derived from components having different physical and chemical properties but the same activation energy. Bulk soil and all density and chemical fractions released progressively older and more C-13-enriched C with increasing activation energy, indicating that each operationally defined fraction itself was not homogeneous but contained a mix of C with different ages and degrees of microbial processing. Overall, we found that defining the full age distribution of C in bulk soil is best quantified by first separating particulate C prior to thermal fractionation of mineral-associated SOM. For the Podzol analyzed here, thermal fractions confirmed that similar to 95 % of the mineral-associated organic matter (MOM) had a relatively narrow C-14 distribution, while 5 % was very low in C-14 and likely reflected C from the < 2 mm parent shale material in the soil matrix. After first removing particulate C using density or size separation, thermal fractionation can provide a rapid technique to study the age structure of MOM and how it is influenced by different OM-mineral interactions

    From Andes to Amazon: assessing branched tetraether lipids as tracers for soil organic carbon in the Madre de Dios River system

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kirkels, F. M. S. A., Ponton, C., Galy, V., West, A. J., Feakins, S. J., & Peterse, F. From Andes to Amazon: assessing branched tetraether lipids as tracers for soil organic carbon in the Madre de Dios River system. Journal of Geophysical Research-Biogeosciences, 125(1), (2020): e2019JG005270, doi:10.1029/2019JG005270.We investigate the implications of upstream processes and hydrological seasonality on the transfer of soil organic carbon (OC) from the Andes mountains to the Amazon lowlands by the Madre de Dios River (Peru), using branched glycerol dialkyl glycerol tetraether (brGDGT) lipids. The brGDGT signal in Andean soils (0.5 to 3.5 km elevation) reflects air temperature, with a lapse rate of −6.0 °C/km elevation (r 2 = 0.89, p < 0.001) and −5.6 °C/km elevation (r 2 = 0.89, p < 0.001) for organic and mineral horizons, respectively. The same compounds are present in river suspended particulate matter (SPM) with a lapse rate of −4.1 °C/km elevation (r 2 = 0.82, p < 0.001) during the wet season, where the offset in intercept between the temperature lapse rates for soils and SPM indicates upstream sourcing of brGDGTs. The lapse rate for SPM appears insensitive to an increasing relative contribution of 6‐methyl isomer brGDGTs produced within the river. River depth profiles show that brGDGTs are well mixed in the river and are not affected by hydrodynamic sorting. The brGDGTs accumulate relative to OC downstream, likely due to the transition of particulate OC to the dissolved phase and input of weathered soils toward the lowlands. The temperature‐altitude correlation of brGDGTs in Madre de Dios SPM contrasts with the Lower Amazon River, where the initial soil signature is altered by changes in seasonal in‐river production and variable provenance of brGDGTs. Our study indicates that brGDGTs in the Madre de Dios River system are initially soil derived and highlights their use to study OC sourcing in mountainous river systems.The brGDGT analyses were supported by NWO‐Veni grant 863.13.016 to F.P. This material is based upon work supported by the US National Science Foundation under grant EAR‐1227192 to A. J. W. and S. J. F. for the river fieldwork and lipid purification. In PerĂș, we thank the Servicio Nacional de Áreas Naturales Protegidas por el Estado (SERNANP) and personnel of Manu and Tambopata National Parks for logistical assistance and permission to work in the protected areas. We thank the Explorers' Inn and the Pontifical Catholic University of PerĂș (PUCP), as well as the Amazon Conservation Association for the use of the Tambopata and Wayqecha Research Stations, respectively. For river fieldwork assistance, we thank M. Torres, A. Robles, and A. Cachuana. Soil samples were contributed by Andrew Nottingham and Patrick Meir. Logistical support was provided by Y. Malhi, J. Huaman, W. Huaraca Huasco, and other collaborators as part of the Andes Biodiversity and Ecosystems Research Group ABERG (www.andesresearch.org). We thank Dominika Kasjaniuk for technical support at Utrecht. Two anonymous reviewers have provided valuable comments that have helped to improve this manuscript. Geochemical and brGDGT data are available in the PANGAEA Data Repository (Kirkels et al., 2019) and can be accessed at https://doi.pangaea.de/10.1594/PANGAEA.90617
    • 

    corecore