840 research outputs found

    Electromagnetic rheometer

    Get PDF
    Force required to pull free a small circular plate imbedded in gel liquid is determined. Procedure for measuring the structure of a gel is given

    Through the Phoropter: A reflective analysis of one practitioner’s attempt to sequence social and emotional learning competencies into an experiential learning program

    Get PDF
    This capstone is a reflective analysis of social and emotional learning programming and its implementation in traditional Western schools. It approaches the question of sequencing social and emotional competencies for instruction through experiential learning. Initially I sought a linear rationale in order to better understand my work in implementing a social and emotional learning program in nearby Keene, New Hampshire through High 5 Adventure Learning Center’s Edge of Leadership program. However, my inquiry shifted in light of several ethical implications that arise from the prospect of constraining social and emotional learning into a pre-set curriculum. As a Course-Linked Capstone, this project draws from coursework and resources from Training Design for Experiential Learning and Training of Trainers: Ethics and Intercultural Training Design. It connects my coursework with my experiences in the field through several practicum positions, each interacting with social and emotional learning in different ways. Over the course of this project, I have learned a great deal about myself as a trainer, facilitator, and designer, as well as the ways in which the ethics that guide my training practice have allowed me to remain critical of the work I do on a daily basis. The ‘phoropter’ referenced in both the title and Part III of this capstone project refers to an instrument used by ophthalmologists to identify a patient’s exact eyeglass prescription. For the purposes of this paper, the phoropter symbolizes two crucial elements of this reflective analysis: the lens through which social and emotional learning can be viewed, in my opinion, as well as the reflective practice process which helps me as a training practitioner see my practice more clearly, working each and every day towards 20/20 vision

    Effects of Mitochondrial-Targeted Human Catalase in Skeletal Tissue of Mice Exposed to Simulated Spaceflight

    Get PDF
    During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation and are at risk forincreased skeletal fragility due to bone loss, Evidence from rodent experiments has established that bothmicrogravity and ionizing radiation can cause bone loss due to increasd of bone-resorbing osteoclasts and decreasedin bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fullyunderstood. We hypothesized that excess reactive oxidative species (ROS) produced by conditions that simulatedspaceflight alters the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletalremodeling and culminating in loss of mineralized tissue. To begin to explore this hypothesis, we used the mCATmouse model [1]; these transgenic mice over-express the human catalase gene targeted to mitochondria, which arethe major organelle responsible for cellular production of free radicals. Catalase is an anti-oxidant that catalyzes theconversion of the reactive species, hydrogen peroxide (H202), into water and oxygen. This animal model wasselected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous systemradiosensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that miceoverexpressing catalase the mitochondria of osteoblast and osteoclast lineage cells would be protected from the boneloss caused by simulated spaceflight

    Simulated Space Radiation and Weightlessness: Vascular-Bone Coupling Mechanisms to Preserve Skeletal Health

    Get PDF
    Weightlessness causes a cephalad fluid shift and reduction in mechanical stimulation, adversely affecting both cortical and trabecular bone tissue in astronauts. In rodent models of weightlessness, the onset of bone loss correlates with reduced skeletal perfusion, reduced and rarified vasculature and lessened vasodilation, which resembles blood-bone symbiotic events that can occur with fracture repair and aging. These are especially serious risks for long term, exploration class missions when astronauts will face the challenge of increased exposure to space radiation and abrupt transitions between different gravity environments upon arrival and return. Previously, we found using the mouse hindlimb unloading model and exposure to heavy ion radiation, both disuse and irradiation cause an acute bone loss that was associated with a reduced capacity to produce bone-forming osteoblasts from the bone marrow. Together, these findings led us to hypothesize that exposure to space radiation exacerbates weightlessness-induced bone loss and impairs recovery upon return, and that treatment with anti-oxidants may mitigate these effects. The specific aims of this recently awarded grant are to: AIM 1 Determine the functional and structural consequences of prolonged weightlessness and space radiation (simulated spaceflight) for bone and skeletal vasculature in the context of bone cell function and oxidative stress. AIM 2 Determine the extent to which an anti-oxidant protects against weightlessness and space radiation-induced bone loss and vascular dysfunction. AIM 3 Determine how space radiation influences later skeletal and vasculature recovery from prolonged weightlessness and the potential of anti-oxidants to preserve adaptive remodeling

    A Comparison of Astronaut Near-Earth Object Missions

    Get PDF
    NASA intends to send astronauts to a near Earth object (NEO) in or around 2025. This is expected to involve a six month mission with a few weeks stay-time at the NEO. Problems with this concept include lack of abort modes, vulnerability to solar flares, and lack of resupply opportunities. Studies by the authors (the Asteroid Mining Group) and a recent workshop at JPL organized by the Keck Institute opens the door to an alternative that addresses these problems and creates additional opportunities. Both groups investigated the feasibility of bringing one of more small NEOs into Earth or Lunar orbit. Particularly for High Earth Orbits (HEO) or High Lunar Orbits (HLO), this appears feasible with near-term technology, especially high-propellant-velocity, low-thrust solar electric propulsion (SEP) inspace vehicles. This paper compares the currently planned mission with an alternative: bringing one or more NEOs into HEO or HLO using SEP and lunar gravity assist. An astronaut mission to the NEO is then similar to a mission to the Moon without a landing. Trip times are measured in days, the NEO can be used for solar flare protection for most of the mission, and resupply within a few days is practical. Furthermore, materials derived from the NEO, e.g., propellant, water, radiation shielding, metals, silicon, and others, are available for projects in cis-lunar space, including satellite refueling, habitats, and space solar power. The alternative mission also develops much of the technology, experience, and infrastructure needed to protect Earth from potentially hazardous NEOs. As an outcome of these studies we are proposing a process whereby early missions can lead to large-scale industrialization of cis-lunar space based on solar energy and asteroidal resources

    Role of Mitochondrial Oxidative Stress in Spaceflight-Induced Tissue Degeneration

    Get PDF
    Microgravity and ionizing radiation in the spaceflight environment poses multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to the excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment

    Late Effects of Heavy-Ion Irradiation on Ex Vivo Osteoblastogenesis and Cancellous Bone Microarchitecture

    Get PDF
    Prolonged spaceflight causes degeneration of skeletal tissue with incomplete recovery even after return to Earth. We hypothesize that heavy-ion irradiation, a component of Galactic Cosmic Radiation, damages osteoblast progenitors and may contribute to bone loss during long duration space travel beyond the protection of the Earth's magnetosphere. Male, 16 week-old C57BL6/J mice were exposed to high-LET (56-Fe, 600MeV) radiation using either low (5 or 10cGy) or high (50 or 200cGy) doses at the NASA Space Radiation Lab and were euthanized 3-4, 7, or 35 days later. Bone structure was quantified by microcomputed tomography (6.8 m pixel size) and marrow cell redox assessed using membrane permeable, free radical-sensitive fluorogenic dyes. To assess osteoblastogenesis, adherent marrow cells were cultured ex vivo, then mineralized nodule formation quantified by imaging and gene expression analyzed by RT-PCR. Interestingly, 3-4 days post-exposure, fluorogenic dyes that reflect cytoplasmic generation of reactive nitrogen/oxygen species (DAF-FM Diacetate or CM-H2DCFDA) revealed irradiation (50cGy) reduced free radical generation (20-45%) compared to sham-irradiated controls. Alternatively, use of a dye showing relative specificity for mitochondrial superoxide generation (MitoSOX) revealed an 88% increase compared to controls. One week after exposure, reactive oxygen/nitrogen levels remained lower (24%) relative to sham-irradiated controls. After one month, high dose irradiation (200 cGy) caused an 86% decrement in ex vivo nodule formation and a 16-31% decrement in bone volume to total volume and trabecular number (50, 200cGy) compared to controls. High dose irradiation (200cGy) up-regulated expression of a late osteoblast marker (BGLAP) and select genes related to oxidative metabolism (Catalase) and DNA damage repair (Gadd45). In contrast, lower doses (5, 10cGy) did not affect bone structure or ex vivo nodule formation, but did down-regulate iNOS by 0.54-0.58 fold. Thus, both low- and high-doses of heavy-ion irradiation cause time-dependent, adaptive changes in redox state within marrow cells but only high doses (50, 200cGy) inhibit osteoblastogenesis and cause cancellous bone loss. We conclude space radiation has the potential to cause persistent damage to bone marrow-derived stem and progenitor cells for osteoblasts despite adaptive changes in cellular redox state

    Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Get PDF
    Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these parameters. Taken together, this typically catabolic treatment (disuse and irradiation) appeared to stimulate cortical expansion in MCAT mice but not WT mice. In conclusion, these results reveal the importance of mitochondrial ROS generation in skeletal remodeling and show that MCAT mice provide a useful animal model for bone studies

    Rodent Habitat on ISS: Advances in Capability for Determining Spaceflight Effects on Mammalian Physiology

    Get PDF
    Rodent research is a valuable essential tool for advancing biomedical discoveries in life sciences on Earth and in space. The National Research Counsel's Decadal survey (1) emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, new flight hardware, operations, and science capabilities were developed at NASA ARC to support commercial and government-sponsored research. The flight phases of two separate spaceflight missions (Rodent Research-1 and Rodent Research-2) have been completed and new capabilities are in development. The first flight experiments carrying 20 mice were launched on Sept 21, 2014 in an unmanned Dragon Capsule, SpaceX4; Rodent Research-1 was dedicated to achieving both NASA validation and CASIS science objectives, while Rodent Reesearch-2 extended the period on orbit to 60 days. Groundbased control groups (housed in flight hardware or standard cages) were maintained in environmental chambers at Kennedy Space Center. Crewmembers previously trained in animal handling transferred mice from the Transporter into Habitats under simultaneous veterinary supervision by video streaming and were deemed healthy. Health and behavior of all mice on the ISS was monitored by video feed on a daily basis, and post-flight quantitative analyses of behavior were performed. The 10 mice from RR-1 Validation (16wk old, female C57Bl6/J) ambulated freely and actively throughout the Habitat, relying heavily on their forelimbs for locomotion. The first on-orbit dissections of mice were performed successfully, and high quality RNA (RIN values>9) and liver enzyme activities were obtained, validating the quality of sample recovery. Post-flight sample analysis revealed that body weights of FLT animals did not differ from ground controls (GC) housed in the same hardware, or vivarium controls (VIV) housed in standard cages. Organ weights analyzed post-flight showed that there were no differences between FLT and GC groups in adrenal gland and spleen weights, whereas FLT thymus and liver weights exceeded those of GC. Minimal differences between the control groups (GC and VIV) were observed. In addition, Over 3,000 aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for the Biospecimen Sharing Program and Genelab project. New capabilities recently developed include DEXA scanning, grip strength tests and male mice. In conclusion, new capability for long duration rodent habitation of group-housed rodents was developed and includes in-flight sample collection, thus avoiding the complication of reentry. Results obtained to date reveal the possibility of striking differences between the effects of short duration vs. long duration spaceflight. This Rodent Research system enables achievement of both basic science and translational research objectives to advance human exploration of space

    Ionizing Radiation Stimulates Expression of Pro-Osteoclastogenic Genes in Marrow and Skeletal Tissue

    Get PDF
    Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically-active, cancellous-bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total-body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16wk), male C57BL/6J mice were exposed to either 2Gy gamma rays (137Cs, 0.8Gy/min) or heavy ions (56Fe, 600MeV, 0.50-1.1Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is 10Gy) or accumulates over long-duration, interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4hrs-7d later. Gamma irradiation caused a prompt (2.6-fold within 4hrs) and persistent (peaking at 4.1-fold within 1d) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappaB-ligand (Rankl) within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3d of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (e.g., monocyte chemotactic protein-1 increased 11.9-fold, tumor necrosis factor-alpha increased 1.7- fold over controls). Marrow expression of the RANKL decoy receptor, osteoprotegerin (Opg), also rose after irradiation (11.3-fold). The ratio Rankl/Opg in marrow was increased 1.8-fold, a net pro-resorption balance. As expected, radiation increased a serum marker of resorption (tartrate resistant acid phosphatase) and led to cancellous bone loss (16% decrease in bone volume/total volume) through reduced trabecular struts. We conclude that total-body irradiation (gamma or heavy-ion) caused temporal, concerted regulation of gene expression within marrow and mineralized tissue for select cytokines which are responsible for osteoclastogenesis and elevated resorption; this is likely to account for rapid and progressive 52 deterioration of cancellous microarchitecture following exposure to ionizing radiation
    • …
    corecore