research

Effects of Mitochondrial-Targeted Human Catalase in Skeletal Tissue of Mice Exposed to Simulated Spaceflight

Abstract

During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation and are at risk forincreased skeletal fragility due to bone loss, Evidence from rodent experiments has established that bothmicrogravity and ionizing radiation can cause bone loss due to increasd of bone-resorbing osteoclasts and decreasedin bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fullyunderstood. We hypothesized that excess reactive oxidative species (ROS) produced by conditions that simulatedspaceflight alters the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletalremodeling and culminating in loss of mineralized tissue. To begin to explore this hypothesis, we used the mCATmouse model [1]; these transgenic mice over-express the human catalase gene targeted to mitochondria, which arethe major organelle responsible for cellular production of free radicals. Catalase is an anti-oxidant that catalyzes theconversion of the reactive species, hydrogen peroxide (H202), into water and oxygen. This animal model wasselected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous systemradiosensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that miceoverexpressing catalase the mitochondria of osteoblast and osteoclast lineage cells would be protected from the boneloss caused by simulated spaceflight

    Similar works