15,626 research outputs found

    Analysis of the velocity field of granular hopper flow

    Full text link
    We report the analysis of radial characteristics of the flow of granular material through a conical hopper. The discharge is simulated for various orifice sizes and hopper opening angles. Velocity profiles are measured along two radial lines from the hopper cone vertex: along the main axis of the cone and along its wall. An approximate power law dependence on the distance from the orifice is observed for both profiles, although differences between them can be noted. In order to quantify these differences, we propose a Local Mass Flow index that is a promising tool in the direction of a more reliable classification of the flow regimes in hoppers

    On the Shape of the Tail of a Two Dimensional Sand Pile

    Full text link
    We study the shape of the tail of a heap of granular material. A simple theoretical argument shows that the tail adds a logarithmic correction to the slope given by the angle of repose. This expression is in good agreement with experiments. We present a cellular automaton that contains gravity, dissipation and surface roughness and its simulation also gives the predicted shape.Comment: LaTeX file 4 pages, 4 PS figures, also available at http://pmmh.espci.fr

    Riemann solvers and undercompressive shocks of convex FPU chains

    Full text link
    We consider FPU-type atomic chains with general convex potentials. The naive continuum limit in the hyperbolic space-time scaling is the p-system of mass and momentum conservation. We systematically compare Riemann solutions to the p-system with numerical solutions to discrete Riemann problems in FPU chains, and argue that the latter can be described by modified p-system Riemann solvers. We allow the flux to have a turning point, and observe a third type of elementary wave (conservative shocks) in the atomistic simulations. These waves are heteroclinic travelling waves and correspond to non-classical, undercompressive shocks of the p-system. We analyse such shocks for fluxes with one or more turning points. Depending on the convexity properties of the flux we propose FPU-Riemann solvers. Our numerical simulations confirm that Lax-shocks are replaced by so called dispersive shocks. For convex-concave flux we provide numerical evidence that convex FPU chains follow the p-system in generating conservative shocks that are supersonic. For concave-convex flux, however, the conservative shocks of the p-system are subsonic and do not appear in FPU-Riemann solutions

    Risk and Business Goal Based Security Requirement and Countermeasure Prioritization

    Get PDF
    Companies are under pressure to be in control of their assets but at the same time they must operate as efficiently as possible. This means that they aim to implement “good-enough security” but need to be able to justify their security investment plans. Currently companies achieve this by means of checklist-based security assessments, but these methods are a way to achieve consensus without being able to provide justifications of countermeasures in terms of business goals. But such justifications are needed to operate securely and effectively in networked businesses. In this paper, we first compare a Risk-Based Requirements Prioritization method (RiskREP) with some requirements engineering and risk assessment methods based on their requirements elicitation and prioritization properties. RiskREP extends misuse case-based requirements engineering methods with IT architecture-based risk assessment and countermeasure definition and prioritization. Then, we present how RiskREP prioritizes countermeasures by linking business goals to countermeasure specification. Prioritizing countermeasures based on business goals is especially important to provide the stakeholders with structured arguments for choosing a set of countermeasures to implement. We illustrate RiskREP and how it prioritizes the countermeasures it elicits by an application to an action case

    Discrete concavity and the half-plane property

    Full text link
    Murota et al. have recently developed a theory of discrete convex analysis which concerns M-convex functions on jump systems. We introduce here a family of M-concave functions arising naturally from polynomials (over a field of generalized Puiseux series) with prescribed non-vanishing properties. This family contains several of the most studied M-concave functions in the literature. In the language of tropical geometry we study the tropicalization of the space of polynomials with the half-plane property, and show that it is strictly contained in the space of M-concave functions. We also provide a short proof of Speyer's hive theorem which he used to give a new proof of Horn's conjecture on eigenvalues of sums of Hermitian matrices.Comment: 14 pages. The proof of Theorem 4 is corrected

    Action minimizing fronts in general FPU-type chains

    Full text link
    We study atomic chains with nonlinear nearest neighbour interactions and prove the existence of fronts (heteroclinic travelling waves with constant asymptotic states). Generalizing recent results of Herrmann and Rademacher we allow for non-convex interaction potentials and find fronts with non-monotone profile. These fronts minimize an action integral and can only exists if the asymptotic states fulfil the macroscopic constraints and if the interaction potential satisfies a geometric graph condition. Finally, we illustrate our findings by numerical simulations.Comment: 19 pages, several figure

    Infrared spectroscopy of diatomic molecules - a fractional calculus approach

    Full text link
    The eigenvalue spectrum of the fractional quantum harmonic oscillator is calculated numerically solving the fractional Schr\"odinger equation based on the Riemann and Caputo definition of a fractional derivative. The fractional approach allows a smooth transition between vibrational and rotational type spectra, which is shown to be an appropriate tool to analyze IR spectra of diatomic molecules.Comment: revised + extended version, 9 pages, 6 figure
    corecore