We report the analysis of radial characteristics of the flow of granular
material through a conical hopper. The discharge is simulated for various
orifice sizes and hopper opening angles. Velocity profiles are measured along
two radial lines from the hopper cone vertex: along the main axis of the cone
and along its wall. An approximate power law dependence on the distance from
the orifice is observed for both profiles, although differences between them
can be noted. In order to quantify these differences, we propose a Local Mass
Flow index that is a promising tool in the direction of a more reliable
classification of the flow regimes in hoppers