10,259 research outputs found
Landau theory of phase separation in cuprates
I discuss the problem of phase separation in cuprates from the point of view
of the Landau theory of Fermi liquids. I calculate the rate of growth of
unstable regions for the hydrodymanics and collisionless limit and, in presence
of long range Coulomb interactions, the size of these regions. These are
analytic results valid for any strength of the Landau parameters.Comment: RevteX, preprint ITP (1994
Charged excitons in doped extended Hubbard model systems
We show that the charge transfer excitons in a Hubbard model system including
nearest neighbor Coulomb interactions effectively attain some charge in doped
systems and become visible in photoelectron and inverse photoelectron
spectroscopies. This shows that the description of a doped system by an
extended Hubbard model differs substantially from that of a simple Hubbard
model. Longer range Coulomb interactions cause satellites in the one electron
removal and addition spectra and the appearance of spectral weight if the gap
of doped systems at energies corresponding to the excitons of the undoped
systems. The spectral weight of the satellites is proportional to the doping
times the coordination number and therefore is strongly dependent on the
dimension.Comment: 10 pages revtex, 5 figures ps figures adde
InP/Ga0.47In0.53As monolithic, two-junction, three-terminal tandem solar cells
The work presented has focussed on increasing the efficiency of InP-based solar cells through the development of a high-performance InP/Ga(0.47)In(0.53)As two-junction, three-terminal monolithic tandem cell. Such a tandem is particularly suited to space applications where a radiation-hard top cell (i.e., InP) is required. Furthermore, the InP/Ga(0.47)In(0.53)As materials system is lattice matched and offers a top cell/bottom cell bandgap differential (0.60 eV at 300 K) suitable for high tandem cell efficiencies under AMO illumination. A three-terminal configuration was chosen since it allows for independent power collection from each subcell in the monolithic stack, thus minimizing the adverse impact of radiation damage on the overall tandem efficiency. Realistic computer modeling calculations predict an efficiency boost of 7 to 11 percent from the Ga(0.47)In(0.53)As bottom cell under AMO illumination (25 C) for concentration ratios in the 1 to 1000 range. Thus, practical AMO efficiencies of 25 to 32 percent appear possible with the InP/Ga(0.47)In(0.53)As tandem cell. Prototype n/p/n InP/Ga(0.47)In(0.53)As monolithic tandem cells were fabricated and tested successfully. Using an aperture to define the illuminated areas, efficiency measurements performed on a non-optimized device under standard global illumination conditions (25 C) with no antireflection coating (ARC) give 12.2 percent for the InP top cell and 3.2 percent for the Ga(0.47)In(0.53)As bottom cell, yielding an overall tandem efficiency of 15.4 percent. With an ARC, the tandem efficiency could reach approximately 22 percent global and approximately 20 percent AMO. Additional details regarding the performance of individual InP and Ga(0.47)In(0.53)As component cells, fabrication and operation of complete tandem cells and methods for improving the tandem cell performance, are also discussed
Measurement of the Hyperfine Structure and Isotope Shifts of the 3s23p2 3P2 to 3s3p3 3Do3 Transition in Silicon
The hyperfine structure and isotope shifts of the 3s23p2 3P2 to 3s3p3 3Do3
transition in silicon have been measured. The transition at 221.7 nm was
studied by laser induced fluorescence in an atomic Si beam. For 29Si, the
hyperfine A constant for the 3s23p2 3P2 level was determined to be -160.1+-1.3
MHz (1 sigma error), and the A constant for the 3s3p3 3Do3 level is -532.9+-0.6
MHz. This is the first time that these constants were measured. The isotope
shifts (relative to the abundant isotope 28Si) of the transition were
determined to be 1753.3+-1.1 MHz for 29Si and 3359.9+-0.6 MHz for 30Si. This is
an improvement by about two orders of magnitude over a previous measurement.
From these results we are able to predict the hyperfine structure and isotope
shift of the radioactive 31Si atom, which is of interest in building a scalable
quantum computer
Experimental evidence of s-wave superconductivity in bulk CaC
The temperature dependence of the in-plane magnetic penetration depth,
, has been measured in a c-axis oriented polycrystalline
CaC bulk sample using a high-resolution mutual inductance technique. A
clear exponential behavior of has been observed at low
temperatures, strongly suggesting isotropic s-wave pairing. Data fit using the
standard BCS theory yields Angstroem and
meV. The ratio
gives indication for a conventional weakly coupled superconductor.Comment: To appear in Phys. Rev. Let
Luther-Emery Stripes, RVB Spin Liquid Background and High Tc Superconductivity
The stripe phase in high Tc cuprates is modeled as a single stripe coupled to
the RVB spin liquid background by the single particle hopping process. In
normal state, the strong pairing correlation inherent in RVB state is thus
transfered into the Luttinger stripe and drives it toward spin-gap formation
described by Luther-Emery Model. The establishment of global phase coherence in
superconducting state contributes to a more relevant coupling to
Luther-Emery Stripe and leads to gap opening in both spin and charge sectors.
Physical consequences of the present picture are discussed, and emphasis is put
on the unification of different energy scales relevant to cuprates, and good
agreement is found with the available experimental results, especially in
ARPES.Comment: 4 pages, RevTe
Colossal Magnetoresistance in the Mn2+ Oxypnictides NdMnAsO1-xFx
Colossal magnetoresistance (CMR) is a rare phenomenon in which the electronic
resistivity of a material can be decreased by orders of magnitude upon
application of a magnetic field. Such an effect could be the basis of the next
generation of magnetic memory devices. Here we report CMR in the
antiferromagnetic oxypnictide NdMnAsO1-xFx as a result of competition between
an antiferromagnetic insulating phase with strong electron correlations and a
paramagnetic semiconductor upon application of a magnetic field. The discovery
of CMR in antiferromagnetic Mn2+ oxypnictide materials could open up an array
of materials for further investigation and optimisation for technological
applications
Collisions, Cosmic Radiation and the Colors of the Trojan Asteroids
The Trojan asteroids orbit about the Lagrangian points of Jupiter and the
residence times about their present location are very long for most of them. If
these bodies originated in the outer Solar System, they should be mainly
composed of water ice, but, in contrast with comets, all the volatiles close to
the surface would have been lost long ago. Irrespective of the rotation period,
and hence the surface temperature and ice sublimation rate, a dust layer exists
always on the surface. We show that the timescale for resurfacing the entire
surface of the Trojan asteroids is similar to that of the flattening of the red
spectrum of the new dust by solar-proton irradiation. This, if the cut-off
radius of the size distribution of the impacting objects is between 1mm and 1m
and its slope is -3, for the entire size-range. Therefore, the surfaces of most
Trojan asteroids should be composed mainly of unirradiated dust.Comment: In press in Icaru
Microwave losses of bulk CaC6
We report a study of the temperature dependence of the surface resistance RS
in the graphite intercalated compound (GIC) CaC6, where superconductivity at
11.5 K was recently discovered. Experiments are carried out using a copper
dielectrically loaded cavity operating at 7 GHz in a "hot finger"
configuration. Bulk CaC6 samples have been synthesized from highly oriented
pyrolytic graphite. Microwave data allows to extract unique information on the
quasiparticle density and on the nature of pairing in superconductors. The
analysis of RS(T) confirms our recent experimental findings that CaC6 behaves
as a weakly-coupled, fully gapped, superconductor.Comment: 2 pages, submitted to Physica C (M2S-HTSC 2006 Proceedings
- …