1,640 research outputs found

    Hyperbolicity Measures "Democracy" in Real-World Networks

    Full text link
    We analyze the hyperbolicity of real-world networks, a geometric quantity that measures if a space is negatively curved. In our interpretation, a network with small hyperbolicity is "aristocratic", because it contains a small set of vertices involved in many shortest paths, so that few elements "connect" the systems, while a network with large hyperbolicity has a more "democratic" structure with a larger number of crucial elements. We prove mathematically the soundness of this interpretation, and we derive its consequences by analyzing a large dataset of real-world networks. We confirm and improve previous results on hyperbolicity, and we analyze them in the light of our interpretation. Moreover, we study (for the first time in our knowledge) the hyperbolicity of the neighborhood of a given vertex. This allows to define an "influence area" for the vertices in the graph. We show that the influence area of the highest degree vertex is small in what we define "local" networks, like most social or peer-to-peer networks. On the other hand, if the network is built in order to reach a "global" goal, as in metabolic networks or autonomous system networks, the influence area is much larger, and it can contain up to half the vertices in the graph. In conclusion, our newly introduced approach allows to distinguish the topology and the structure of various complex networks

    Dianthracenylazatrioxa[8]circulene: synthesis, characterization and application in OLEDs

    Get PDF
    A soluble, green-blue fluorescent, pi-extended azatrioxa[8]circulene was synthesized by oxidative condensation of a 3,6-dihydroxycarbazole and 1,4-anthraquinone by using benzofuran scaffolding. This is the first circulene to incorporate anthracene within its carbon framework. Solvent-dependent fluorescence and bright green electroluminescence accompanied by excimer emission are the key optical properties of this material. The presence of sliding pi-stacked columns in the single crystal of dianthracenylazatrioxa[8]circulene is found to cause a very high electron-hopping rate, thus making this material a promising n-type organic semiconductor with an electron mobility predicted to be around 2.26 cm(2) V-1 s(-1). The best organic light-emitting diode (OLED) device based on the dianthracenylazatrioxa[8]circulene fluorescent emitter has a brightness of around 16 000 Cd m(-2) and an external quantum efficiency of 3.3 %. Quantum dot-based OLEDs were fabricated by using dianthracenylazatrioxa[8]circulene as a host matrix material.Peer reviewe

    Vicious Walkers and Hook Young Tableaux

    Full text link
    We consider a generalization of the vicious walker model. Using a bijection map between the path configuration of the non-intersecting random walkers and the hook Young diagram, we compute the probability concerning the number of walker's movements. Applying the saddle point method, we reveal that the scaling limit gives the Tracy--Widom distribution, which is same with the limit distribution of the largest eigenvalues of the Gaussian unitary ensemble.Comment: 23 pages, 5 figure

    On the partial connection between random matrices and interacting particle systems

    Full text link
    In the last decade there has been increasing interest in the fields of random matrices, interacting particle systems, stochastic growth models, and the connections between these areas. For instance, several objects appearing in the limit of large matrices arise also in the long time limit for interacting particles and growth models. Examples of these are the famous Tracy-Widom distribution functions and the Airy_2 process. The link is however sometimes fragile. For example, the connection between the eigenvalues in the Gaussian Orthogonal Ensembles (GOE) and growth on a flat substrate is restricted to one-point distribution, and the connection breaks down if we consider the joint distributions. In this paper we first discuss known relations between random matrices and the asymmetric exclusion process (and a 2+1 dimensional extension). Then, we show that the correlation functions of the eigenvalues of the matrix minors for beta=2 Dyson's Brownian motion have, when restricted to increasing times and decreasing matrix dimensions, the same correlation kernel as in the 2+1 dimensional interacting particle system under diffusion scaling limit. Finally, we analyze the analogous question for a diffusion on (complex) sample covariance matrices.Comment: 31 pages, LaTeX; Added a section concerning the Markov property on space-like path

    Second order analysis of geometric functionals of Boolean models

    Full text link
    This paper presents asymptotic covariance formulae and central limit theorems for geometric functionals, including volume, surface area, and all Minkowski functionals and translation invariant Minkowski tensors as prominent examples, of stationary Boolean models. Special focus is put on the anisotropic case. In the (anisotropic) example of aligned rectangles, we provide explicit analytic formulae and compare them with simulation results. We discuss which information about the grain distribution second moments add to the mean values.Comment: Chapter of the forthcoming book "Tensor Valuations and their Applications in Stochastic Geometry and Imaging" in Lecture Notes in Mathematics edited by Markus Kiderlen and Eva B. Vedel Jensen. (The second version mainly resolves minor LaTeX problems.

    Statistical mechanics of voting

    Full text link
    Decision procedures aggregating the preferences of multiple agents can produce cycles and hence outcomes which have been described heuristically as `chaotic'. We make this description precise by constructing an explicit dynamical system from the agents' preferences and a voting rule. The dynamics form a one dimensional statistical mechanics model; this suggests the use of the topological entropy to quantify the complexity of the system. We formulate natural political/social questions about the expected complexity of a voting rule and degree of cohesion/diversity among agents in terms of random matrix models---ensembles of statistical mechanics models---and compute quantitative answers in some representative cases.Comment: 9 pages, plain TeX, 2 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages

    Optimization of supply diversity for the self-assembly of simple objects in two and three dimensions

    Full text link
    The field of algorithmic self-assembly is concerned with the design and analysis of self-assembly systems from a computational perspective, that is, from the perspective of mathematical problems whose study may give insight into the natural processes through which elementary objects self-assemble into more complex ones. One of the main problems of algorithmic self-assembly is the minimum tile set problem (MTSP), which asks for a collection of types of elementary objects (called tiles) to be found for the self-assembly of an object having a pre-established shape. Such a collection is to be as concise as possible, thus minimizing supply diversity, while satisfying a set of stringent constraints having to do with the termination and other properties of the self-assembly process from its tile types. We present a study of what we think is the first practical approach to MTSP. Our study starts with the introduction of an evolutionary heuristic to tackle MTSP and includes results from extensive experimentation with the heuristic on the self-assembly of simple objects in two and three dimensions. The heuristic we introduce combines classic elements from the field of evolutionary computation with a problem-specific variant of Pareto dominance into a multi-objective approach to MTSP.Comment: Minor typos correcte

    A Unique Population of Cave Bears (Carnivora: Ursidae) from the Middle Pleistocene of Kents Cavern, England, Based on Dental Morphometrics

    Get PDF
    The ‘breccia’ stratum from Kents (we follow local tradition in using the form ‘Kents’, without an apostrophe) Cavern, England, has been well known for its rich yield of cave-bear material since excavations began in the mid-19th century. Recent work has established that the bears are of latest MIS 12 or earliest MIS 11 age. A life table based on a collection of 67 molariform teeth is consistent with the use of the cave as a hibernaculum. Univariate and morphological assessment of the teeth shows an unusual range of primitive and more derived characters. Multivariate morphometric analysis of cave-bear teeth from the site demonstrates that these animals, while currently assignable to Ursus deningeri sensu lato, are nevertheless morphologically distinct and not simply late deningeri on a hypothetical chronospecific continuum

    Topological aggregation, the twin paradox and the No Show paradox

    Get PDF
    International audienceConsider the framework of topological aggregation introduced by Chichilnisky (1980). We prove that in this framework the Twin Paradox and the No Show Paradox cannot be avoided. Anonymity and unanimity are not needed to obtain these results
    corecore