41 research outputs found

    The Superconductivity, Intragrain Penetration Depth and Meissner Effect of RuSr2(Gd,Ce)2Cu2O10+delta

    Full text link
    The hole concentration (p)(delta), the transition temperature Tc, the intragrain penetration depth lambda, and the Meissner effect were measured for annealed RuSr2(Gd,Ce)2Cu2O10+delta samples. The intragrain superconducting transition temperature Tc} varied from 17 to 40 K while the p changed by only 0.03 holes/CuO2. The intragrain superfluid-density 1/lambda^2 and the diamagnetic drop of the field-cooled magnetization across Tc (the Meissner effect), however, increased more than 10 times. All of these findings are in disagreement with both the Tc vs. p and the Tc vs. 1/lambda^2 correlations proposed for homogeneous cuprates, but are in line with a possible phase-separation and the granularity associated with it.Comment: 7 pages, 6 figures, accepted for publication in Phys. Rev. B (May 2, 2002

    Structure-Function Studies of DNA Binding Domain of Response Regulator KdpE Reveals Equal Affinity Interactions at DNA Half-Sites

    Get PDF
    Expression of KdpFABC, a K+ pump that restores osmotic balance, is controlled by binding of the response regulator KdpE to a specific DNA sequence (kdpFABCBS) via the winged helix-turn-helix type DNA binding domain (KdpEDBD). Exploration of E. coli KdpEDBD and kdpFABCBS interaction resulted in the identification of two conserved, AT-rich 6 bp direct repeats that form half-sites. Despite binding to these half-sites, KdpEDBD was incapable of promoting gene expression in vivo. Structure-function studies guided by our 2.5 Å X-ray structure of KdpEDBD revealed the importance of residues R193 and R200 in the α-8 DNA recognition helix and T215 in the wing region for DNA binding. Mutation of these residues renders KdpE incapable of inducing expression of the kdpFABC operon. Detailed biophysical analysis of interactions using analytical ultracentrifugation revealed a 2∶1 stoichiometry of protein to DNA with dissociation constants of 200±100 and 350±100 nM at half-sites. Inactivation of one half-site does not influence binding at the other, indicating that KdpEDBD binds independently to the half-sites with approximately equal affinity and no discernable cooperativity. To our knowledge, these data are the first to describe in quantitative terms the binding at half-sites under equilibrium conditions for a member of the ubiquitous OmpR/PhoB family of proteins

    Cf252 neutron source

    No full text
    corecore